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Abstract– In this study, an artificial neural network (ANN) was applied to predict the performance 
of two rotating biological contactor (RBC) systems in removal of hydroquinone (a toxic aromatic 
compound). The first system was a two-staged conventional RBC and the second one was a one-
staged packed-cage RBC with bee-cell 2000 biofilm carriers. Both systems had a total area of 
about 2 m2 for biofilm attachment. The main aim is to predict COD removal efficiencies in both 
systems using ANN. Efficiency evaluation of the reactors was obtained at different influent COD 
from 200 to 5000 mg/L. Exploratory data analysis was used to detect relationships between the 
data and the evaluated dependents. The appropriate architecture of the neural network models was 
determined using several steps of training and testing the models. The modeling results showed 
that there is a good agreement between the experimental data and the predicted values with a 
correlation coefficient (R2) of 0.998 and 0.997 for RBC with rotating disks and packed-cage RBC, 
respectively.           

 
Keywords– Hydroquinone, COD, rotating biological contactor, neural networks  
 

1. INTRODUCTION 
 

Phenolic compounds are aromatic molecules containing a benzoic ring connected to one or several 

hydroxyl groups. These compounds are produced, consumed, and discharged to the environment by many 

industries [1]. Hydroquinone is one of the most important phenolic compounds, and it is widely used in 

agricultural, photographic, cosmetic, rubber and chemical industries. Hydroquinone can be treated by 

different physical and chemical methods such as adsorption, phenton, chemical oxidation and 

electrochemistry [2]. Previous studies indicate that it is also a biodegradable compound. For example, 

hydroquinone was oxidized with hydrogen peroxide and an enzyme extracted from a bacterium named 

Serratia marcescens AB90027 as a catalyst. The results showed 96% removal in influent COD of 3500 

mg/L [3]. In a different research, various pure cultures of microorganisms were tested to utilize 

hydroquinone as the sole carbon source. The pure cultures were isolated from soil, photographic and 

laboratory sludge, 97.5% total organic carbon (TOC) removal was gained after five days [4]. In another 

study, three phenolic compounds including pyrogallol, phenol and hydroquinone were investigated using 

Moving Bed Biofilm Reactor (MBBR) with polyethylene biofilm carriers. Hydroquinone had the highest 

removal efficiency of 90% for 700 mg/L influent COD [5]. 

The rotating biological contactor (RBC) usually consists of a series of plastic circular disks (biodisk). 

These disks are staged on a horizontal shaft, rotating perpendicular to the direction of the wastewater flow, 

                                                           
Received by the editors August 11, 2011; Accepted July 21, 2012. 
Corresponding author 
 
 



F. Khalil Arya and B. Ayati 
 

IJST, Transactions of Civil Engineering, Volume 37, Number C2                                                                                August 2013 

326

and usually 40–45% of the total disk area is immersed in the wastewater. The attached microorganisms 

(biofilm) are alternatively submerged in the wastewater with the rotation of the disks. The biodisk is 

rotated at a speed which enables the development of the attached biofilm. Oxygen transfer is achieved by 

exposure and renewal of air–water interfaces, as the wastewater lifted out by the rotating device trickles 

back down into the tank. This cycle also benefits the adsorption and uptake of organics from the 

wastewater [6]. 

The RBC system has many advantages such as relative low energy consumption, simple operation 

and maintenance, and successive removal of the influent contaminants. This system has been successfully 

used in aerobic treatment processes such as decolorization [7], Fe oxidation, pathogenic bacteria removal 

from wastewater and nitrification [6]. This system has also been used in bioremediation of landfill 

leachates [8], heavy metals [9], and treatment of effluents from wineries [10], bakeries [11], food 

processing [12] and other biodegradable industrial discharges. 

RBC systems have evolved significantly from the original design of several rotating discs. Many 

variations now exist, ranging from simple flat discs through corrugations to cellular meshes, all of which 

are designed to give extra surface area per unit volume [13]. 

Some alternations of RBCs media have been investigated at a laboratory-scale with satisfactory 

results of substrate removal. In one study, the disks of the RBC were modified by adding porous netlon 

sheets to increase area and volume of biofilm [14]. In another study, a layer of polyurethane foam was 

added on the discs to improve attachment of filamentous organisms [15]. 

Random packed media have been successfully tested as replacements for conventional disks at the 

laboratory and pilot-scale studies, providing extra surface area per unit volume. As a result, mass transfer 

efficiency will increase because of higher turbulence in the reactors. Also, the cost of fabrication of these 

systems is about one third that of conventional RBCs consisting of discs and their energy consumption is 

lower [16, 17]. Different kinds of packing such as pallrings, saddles and, cylindrical plastic elements with 

different sizes have been used in random packed RBC systems with satisfactory results [11, 17, and 18]. 

In a Biological wastewater treatment system like RBC, the performance of the system might have 

been influenced by influent characteristics variability. Therefore, biological process modeling is a 

demanding task as most of the available models are just approximations based on probabilities and 

assumptions. Recently, artificial neural networks (ANNs) have been increasingly applied in environmental 

and water resources engineering area [19]. 

The artificial neural network is a promising computational technique for modeling complex 

relationships, especially where the definite form of the relation between the variables is unknown. The 

advantages of ANNs are, less time required for model development than the traditional mathematical ones, 

ability to predict with limited numbers of experiments and their power to learn complicated relationships 

without knowledge of the model structure or phenomena involved in the process [20]. 

The first wave of interest in neural networks emerged after the introduction of simplified neurons by 

McCulloch and Pitts in 1943. More of ANN’s history and a comprehensive review of their industrial 

applications can be found in the papers of Patterson and Meireles [21, 22]. ANNs have been applied to 

solve environmental engineering problems such as biological and physico-chemical wastewater treatment 

[23-26]. 

The main aim of this study is to compare the performance of conventional and packed-cage RBC 

biological systems in the treatment of wastewater containing hydroquinone and to develop models for 

predicting COD removal efficiencies using artificial neural networks. 
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2. MATERIALS & METHODS 
 
a) Reactor setup 
 
In this study, the removal efficiency of hydroquinone was investigated in two different laboratory scale 
RBC systems. The first system was a two-staged conventional RBC with rotating discs (RBC I and RBC 
II), and the second was a one-staged packed-cage RBC with bee-cell 2000 biofilm carriers provided by 
GRM (Global Resources Management) Company. Each stage of the rotating discs RBC consisted of 27 
parallel plexiglas rotating disks (15 cm in diameters). The packed-cage RBC had a net drum full of biofilm 
carriers with specific surface area about 650 m2/m3. Both systems had a total area of 2 m2 and were fed by 
a peristaltic pump. The schematic plan of the pilot and the 3-D view of the reactors are presented in Figs. 
1a and 1b, and their specifications are summarized in Table 1. The specifications of bee-cell 2000 biofilm 
carriers are summarized in Table 2. 

 

 

a) b) 
Fig. 1. a) Schematic plan of the pilot b) 3-D view of the reactors 

 
Table 1. Specification of the systems 

Parameter Conventional RBC Packed-cage RBC 

No. of stages 2 1 

Volume of each stage (L) 3 3 

Submergence (%) 40 40 

Total biofilm area (m2) 2 2 

No of disk in each stage 27 - 

Disks diameter (cm) 15 - 
 

Table 2. Specifications of biofilm carriers in packed-cage RBC 

Type Bee-cell 2000 

Material Compressed polystyrene 

Special area (m2/m3) 650 

Quantity in 1 m3 361000 
 

Hydroquinone supplied by Merck Company served as the sole carbon source. To have C/N/P = 
100/5/1, necessary nutrients (urea, KH2PO4, K2HPO4) were also added as supplement feed to the reactors 
in all experiments. Other compounds of the synthetic wastewater were (mg/L): MgSO4·7H2O, 20; FeCl3, 
0.12; CaCl2, 1.9; MnSO4, H2O, 2.5. 

RBC samples were collected from the head-end of the first stage, and the tail-ends of all stages 
through the respective sampling ports placed in each stage of the reactor. The samples were filtered 
through a 0.45 µm Whatman filter paper. Chemical oxygen demand (COD) and hydroquinone 
concentration was measured daily for the influent and effluent from the stages during the period of 
operation. Analytical procedures followed in this study were those outlined in Standard Methods, for 
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example, the COD experiments were based on the procedure code 5220 of this book [27]. Table 3 presents 
some of the equipment used in the experiments. 
 

Table 3. Some of the equipment used in the experiments 

COD Reactor: Hatch DRB200 

Spectrometer: Lambda EZ 150 

pH Meter: Metrohm 691 

Centrifuge: Sigma 101 

NMR 500: AC-500MHZ (Bruker) 
 

During the startup, the sludge seed was obtained from Ekbatan wastewater treatment plant which is 
located in the capital city of Tehran. In this period, the daily dosage of 200 mg/L COD as glucose and 
synthetic wastewater were fed to each reactor (for 60 days). After increasing biofilm mass, the acclimation 
was started with the stepwise substitution of glucose with hydroquinone (CODhdroquinone/CODtotal was 
increased about 10% in each step). In this stage, the maximum removal efficiencies were 94, 94 and 92 
percent, respectively for the first and second stages of RBC with rotating discs and packed-cage RBC in 
CODhdroquinone/CODtotal = 0.5. After the acclimation stage, the amount of COD was being increased 
stepwise up to 5000 mg/L. The duration of the reactor operation in the startup, acclimation and loading 
stages is shown in Fig. 2.  

 
Fig. 2. Duration of reactor operation in different stages of the study 

 
b) Software 
 

For the development of the ANN models, Neural Network Toolbox 5 and MATLAB 9 (The 
Mathworks Inc. USA) were used. A MATLAB script was written which loaded the data file, trained and 
validated the networks. The input and output data were normalized and de-normalized for application in 
the network. A computer with a Core™2 Duo 2.5 GHz processor and 2 GB internal memory took a few 
seconds for processing of each neural network.  
 
c) Neural networks 
 

A neural network model consists as a set of parallel inter-connected simple computational units, 
called neurons. A neuron (also known as node) is a non-linear algebraic function, parameterized with 
boundary values [28]. 

Input-target training data are normally used to improve the optimization and behavior of the training 

process. Thus, the data are usually divided into three subsets; training, validation and testing. The training 
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data are used for network learning and adjusting the network weights by minimizing an appropriate error 

function. Backpropagation is a training technique generally used for this purpose, and is a method for 

computing the gradient of the case-wise error function with respect to the weights for a feed forward 

network. The performance of the networks is compared by evaluating the error function using the 

validation subset data, independently. The test data are used to evaluate the generalization of the network 

and the accuracy of the targets for inputs, which are not in the training set [29]. 
 
-Selection of database: Selection of data for training the models is a very important step of developing 

each neural network. So, it must be done with a large and comprehensive set of reliable experimental data. 

In this work, the database was continuously collected for three months from the two systems. Reactors 

were fed with hydroquinone synthetic wastewater at a hydraulic loading rate of 1.5 L/m2.d and rotation 

speed of 5 rpm for disks and the packed-cage. COD removal efficiencies of each system were evaluated at 

different influent COD from 200 to 5000 mg/L. A total of 96 data pairs have been obtained from the 

experimental database and 70% of them were used as the training data. The rest of the data (30%) was 

used for validation and testing of the data.  
 
-Selection of model architecture: Choosing the network structure is a very important step in the design 

of neural networks. The structure must be optimized to decrease computer processing time, obtain good 

performance and prevent overfitting. The number of input and output neurons is equivalent to the number 

of input and output data (respectively 3 and 1 in this study). Because of the many contributing factors, 

there is no definite way to determine of the best number of hidden layers and the optimum number of 

nodes in each layer. For example, the size of the training data set, the amount of noise in the targets, 

complexity of the sought function to be modeled, type of activation functions used and the training 

algorithm all affect the sizes of the hidden layers. The best number of hidden units cannot be determined 

without training several networks and estimating the generalization error of each. Thus, they are usually 

selected via a trial and error procedure [29]. 

Flood and Kartam [30] reported that use of more than one hidden layer provides more flexibility and 

enables estimation of more complicated functions with fewer nodes. According to Baughman and Liu's 

findings [31], adding the second hidden layer enhances the network prediction. Additionally, it was 

observed that, by adding the third hidden layer prediction capability is similar to a two hidden layer 

model, but it causes complexity of the structure and longer training times. Anderson and McNeill [32] 

suggested that the maximum number of neurons in the hidden layers can be estimated by dividing the 

number of input–output pairs in the training set by the total number of input and output nodes in the 

network multiplied by a scaling factor between 5 and 10. 

In this study, the optimum number of hidden layers and nodes in each layer were determined using 

two nested for/next loop, one for setting the number of neurons in the first hidden layer and another for 

neurons in the second hidden layer. The best results were acquired with a three-layer network consisting 

of two hidden layers (Both had six nodes), and an output layer. The geometry of this network is illustrated 

in Fig. 3.  
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Fig. 3. Structure of the neural network model 

 
-Back-propagation neural network: One of the best ways of training or determining the weights of the 
network is using back propagation strategy, which gives reasonable results with inputs that have never 
been exposed to the network. Standard backpropagation is a gradient descent in which the network 
weights are moved along the negative of the gradient of the performance function [33]. This method is 
used to distribute the error to achieve the best fit. An output is predicted by the network in a forward 
direction; then, the backpropagation algorithm redistributes the error of the resulted output back through 
the model, and weights are adjusted. The error is minimized through several iterations. Each complete 
cycle is called an ‘epoch’. In each layer, all neurons are connected to every neuron in the next layer [34]. 

Based on the application and network architecture, the learning rate can be a crucial factor in the 
convergence of the neural network. This parameter can be used to decrease the chance of the training 
process being trapped in a local minimum instead of a global minimum [35]. A greater learning rate means 
a larger step. If the learning rate is extremely large, the algorithm will become unstable. On the other hand, 
an algorithm with a very small learning rate needs more time to converge. Momentum is a parameter 
which enables the network to respond to the local gradient and recent trends in the error surface. 
Moreover, a network without a momentum is vulnerable to the risk of getting stuck in a shallow local 
minimum [36]. In this study, the learning rate, maximum number of iterations, the momentum constant 
and the error goal were defined 0.001, 30, 0.8 and 0.01, respectively.  

10 BP algorithms were compared to select the best fitting BP that minimized the error between neural 
network output and target value. For all algorithms, a three-layer network with a tan-sigmoid transfer 
function within the two hidden layers and a linear transfer function within the output layer were used. In 
order to determine the degree of error of trained model, testing and validation were used. In this study, the 
performance of the training was evaluated in terms of the mean square error (MSE) and determination 
coefficient (R), which determines the closeness of prediction between the desired and the predicted output 
from the neural network. After choosing the optimum BP algorithm, the number of neurons was optimized 
while other parameters were constant.  

 
3. RESULTS & DISCUSSION 

 
a) Experimental results 
 
Variation of COD removal efficiencies of both rotating discs and packed-cage RBCs in influent CODs 
from 200 to 5000 mg/L are presented in Fig. 4. In these experiments, both systems were operated in a 

Effluent COD Repetition of the 
Influent COD
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hydraulic loading rate of 1.5 L/m2.d, and rotation speed of 5 rpm. In both systems COD removal 
efficiencies increased with raising COD up to 1000 mg/L. The highest COD removal efficiencies in RBC I 
and RBC II were 90 and 93 percent, respectively at COD=1000 mg/L. Packed-cage RBC had the highest 
COD removal efficiency of 88% in influent COD range of 700 to 1000 mg/L. For influent COD 1000-
5000 mg/L, increasing the loading rate resulted in decreasing COD removal efficiencies in both systems. 
Up to 4000 mg/L influent COD, the RBC with rotating discs had higher removal efficiencies (about 5 to15 
percent), but at higher loading rates, packed-cage RBC had better results. 
 

 
Fig. 4. Variation of COD removal in rotating disks and packed-cage RBC 

 
b) ANN model results 
 
-Selection of backpropagation training algorithm: To determine the best backpropagation (BP) training 
algorithm, 13 BP algorithms were studied. Tangent sigmoid transfer function (tansig) at hidden layer and a 
linear transfer function (purelin) at output layer were used. In addition, 6 neurons were used in the hidden 
layers for all BP algorithms. Table 4 shows a comparison of different backpropagation (BP) training 
algorithms. Levenberg–Marquardt backpropagation algorithm (LMA) was able to have the smallest mean 
square error (MSE) and determination coefficient (R), compared to other backpropagation algorithms. 
Therefore, LMA was selected as the training algorithm in the present study. 
 

Table 4. Comparison of 13 backpropagation algorithms for predicting COD removal efficiency 

Function Back propagation (BP) Algorithm 
RBC with rotating discs 

Stage 1 
RBC with rotating discs 

Stage 2 
Packed-cage RBC 

MSE R Iteration MSE R Iteration MSE R Iteration

trainb 
Batch training with weight and bias 
learning rules 

40.479 0.94678 100 41.454 0.92511 100 38.745 0.95271 100 

trainbfg BFGS quasi-Newton BP 1.445 0.93723 100 1.452 0.94989 84 2.33 0.96774 86 

trainbr Bayesian regularization 2.884 0.99794 64 1.539 0.99811 100 1.671 0.99806 65 

traincgb Powell-Beale conjugate gradient BP 4.397 0.61969 100 3.798 0.36699 80 3.944 0.85117 100 

traincgf Fletcher-Powell conjugate gradient BP 10.257 0.17509 50 8.907 0.61735 49 9.478 0.7518 84 

traincgp Polak-Ribiére conjugate gradient BP 2.131 0.54888 95 2.92 0.82188 97 3.882 0.56599 96 

traingda 
Gradient descent with adaptive 
learning rule BP 

15.707 0.98174 100 13.77 0.98006 100 15.744 0.096498 100 

traingdm Gradient descent with momentum BP 12.816 0.98604 100 11.333 0.98299 100 13.814 0.97164 100 

traingdx 
Gradient descent with momentum and 
adaptive learning rule BP 

5.3431 0.99305 100 7.45 0.98955 100 7.081 0.98575 100 

trainlm Levenberg-Marquardt BP 0.516 0.99931 100 0.297 0.99977 68 0.509 0.998931 100 

trainoss One step secant BP 5.339 0.24688 100 5.918 0.78384 100 5.046 0.69911 87 

trainrp Resilient BP (Rprop) 6.46 0.99153 100 5.793 0.99181 60 8.496 0.99026 40 

trainscg Scaled conjugate gradient BP 3.822 0.99696 96 4.279 0.99317 100 2.53 0.9946 100 
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-Regression analysis: A regression analysis of the network response has been performed for the network 
output and the corresponding target (Fig. 5). Considering the non-linear dependence of the data, the output 
appears to track the targets reasonably well. Correlation coefficients (R2) were 0.998, 0.998 and 0.997, and 
the obtained mean square error values were 0.516, 0.297 and 0.509 for predicted COD removal 
efficiencies in the first and second stages of RBC with rotating disks and packed-cage RBC, respectively. 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. Linear Regression between the network outputs and the corresponding training targets in the (a) first and (b) 
second stages of RBC with rotating discs and in (c) packed-cage RBC 
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Fig. 6 illustrates the performance of the optimized ANN models in predicting COD removal 
efficiencies of the RBC systems. For all three sets of the data, ANN models had a satisfactory accuracy in 
fitting the outputs and targets. So, it can be concluded that the proposed models are adequately able to 
predict the performance of both RBC with rotating disks and packed-cage systems.  

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Performance of ANN model prediction in the (a) first and (b) second stages  
of RBC with rotating discs and (c) packed-cage RBC 
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4. CONCLUSION 
 
In this study, a three-layer backpropagation neural network was optimized to predict the performance of 
rotating discs and packed-cage RBC systems in the degradation of hydroquinone (in terms of COD 
removal). The configuration of the backpropagation neural network which had the smallest MSE, was a 
four-layer ANN (3:6:6:1) with tangent sigmoid transfer function (tansig) with 6 neuron hidden layers. The 
output layer had linear transfer function (purelin), and Levenberg–Marquardt backpropagation training 
algorithm (LMA) had the best performance. Based on the findings of this study, the following conclusions 
can be drawn: 

 Both RBC systems as advanced biological processes had proper COD removal efficiencies for 
treating hydoquinone synthetic wastewater. Up to 90, 93 and 88 percent removal efficiencies were 
obtained in RBC I, RBC II, and packed-cage respectively, for influent COD of 800 mg/L. The 
results of this study are comparable with similar research in recent years. For example, 90% 
removal efficiency of hydroquinone has been obtained for 700 mg/L influent COD using a MBBR 
[5]. In another study, with a bacterium (Serratia marcescens AB90027) as a catalyst, 96% of 
hydroquinone was removed in the influent COD of 3500 mg/L [3]. 

 During the experiments up to 4000 mg/L influent COD, RBC with rotating discs had higher 
removal efficiencies (about 5%-15%), but at higher loading rates, packed-cage RBC had better 
results. 

 The model presents the ability of a feed-forward back-propagation neural network to predict the 
performance of RBC systems with a good accuracy. The model had a quite good performance in 
the estimation of not only the COD removal efficiencies used in training process, but also those of 
test data that were unfamiliar to the neural network. 

 The designed, trained and validated artificial neural network model had a reasonable fit to the 
experimentally obtained data with a correlation coefficient (R2) of 0.998 and 0.997 for RBC with 
rotating disks and packed-cage RBC, respectively. 
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