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Abstract– In this paper, the behavior of a fault is studied using a constant strain joint model. A 
combination of slider and spring is used to simulate the shear behavior of faults in the plastic 
region in contrast to the previous models that have only used an elastic shear spring. Furthermore, 
the proposed joint element was used to study the behavior of a fault crossing a tunnel regarding the 
represented shear plastic and dilation behavior of this joint element, and for this purpose a Matlab 
based program called FEAFB (Finite element analysis of fault behavior) has been developed. The 
corresponding normal and shear stresses, shear strengths and the factors of safety, for different 
horizontal to vertical stress ratios and shear stiffness are analyzed and compared to the results of a 
similar modeling in UDEC program. The analysis indicates that the normal and shear stresses, and 
the shear strength are increased in the fault elements near the tunnel, and they are decreased in the 
elements becoming far from the tunnel surface. However, the safety factor can either increase or 
decrease as it becomes closer to the tunnel surface, depending on the horizontal to vertical stress 
ratio. Moreover, it is also shown that safety factor depends upon the shear stiffness, i.e., as shear 
stiffness increases, shear stress increases, and as a result, the safety factor decreases.           
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1. INTRODUCTION 
 

Discontinuities, such as cracks, joints and faults, play a significant role in the behavior of rock masses and 
can alter the distribution of stresses and deformations. The effect of discontinuities, particularly faults, 
where passing near a tunnel may influence the stability of the tunnel dramatically; hence, consideration of 
the fault effects on the stability analysis and design of tunnels is of paramount importance.  

In this paper, a joint element, depicted in Fig. 1, is presented which is based on the finite element 
method, and consists of two double nodal linear elements. This joint element includes a normal spring 
which models a normal stiffness of Kn, and is connected to a no-tension element,. Moreover, the elastic 
shear behavior of the fault is modeled by an elastic shear spring with stiffness K1,  

The main contribution in this study is the modeling of the plastic shear behavior of the fault with 
combination of an additional shear spring and a slider to represent the shear and dilation behavior of the 
fault while asperities sheared off in contrast to previous models which have considered only an elastic 
shear stiffness. This new element is used to analyze the shear and normal stresses, shear strength, and the 
safety factor of a fault in the vicinity of a tunnel. The analysis is based on the Ladanyi-Archambault 
failure criterion.  

Goodman and Taylor [1] were the first authors who modeled the shear and normal behavior of a 
discontinuity using a joint element, based on finite element method, but this model is basic and only an 
elastic shear spring has been applied, however, it has some limitations on the problem geometry and 
boundary conditions which can result in numerical difficulties.  
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Fahimifar [2] used the joint element proposed by Goodman [1] for analysis of jointed rock specimens 
under triaxial loading condition, numerically. He also studied the effects of schistosity of a typical rock 
(Isfahan schist) experimentally for various anisotropic angles [3]. The effects of joint orientation on the 
stress and strain properties of jointed specimens and the time influence on the rock joints were also 
investigated by Fahimifar [4 and 5]. 

J. G. Wang et al presented a constitutive model to predict the behavior of rock joints based on limit 
concept. This interface model employs a non-proportional ellipse yield function that is different from 
other yield functions adopted in soil mechanics. The shear behavior in this model transfers to residual after 
elastic stage [6].  

More recently, J. H. Wu et al simulated the mechanical behavior of inclined jointed rock masses 
using Discontinuous Deformation Analysis (DDA) during tunnel construction. In this analysis, the stress 
distribution and surface subsidence near inclined jointed rock masses are investigated. The inclined rock 
joints have been modeled using an elastic normal spring and an elastic-residual shear spring [7]. 
 

2. MODEL DEFINITION 
 
The model depicted in Fig. 1 is proposed by the authors to study the normal, shear, torsion, and dilation 
behavior of a discontinuity of length L. The constant strain joint element is composed of two double nodal 
line elements [8].  
 

 
Fig. 1. The proposed joint model [8] 

    
The normal behavior is modeled with a spring in the normal direction that provides normal stiffness 

(Kn) in compression while having no tension strength. Moreover, an elastic shear spring with stiffness of 
K1 is used in combination with another shear spring of stiffness K2 and a slider (Mandel Model) to model 
shear behavior of the joint element. Using this combination, the presented joint element is capable of 
modeling the plastic regime of the shear behavior of a joint to simulate breaking of the asperities, and 
therefore, the plastic and the residual phases are considered for the shear behavior of a fault in this joint 
model. It is worthy to mention that in the previous model presented by Goodman, the shear behavior is 
demonstrated only by a shear spring for the elastic part [1and 8]. 

This joint element is able to model the plastic behavior of a discontinuity such as a fault by a 
combined analytical-numerical approach, and based on the fact that the material property matrix does not 
have any off-diagonal coefficient. So, the possibility of numerical ill-conditioning of stiffness matrix 
which might occur because of very large off-diagonal terms or very small diagonal terms reduces 
considerably. Also, dilation is considered in this model in comparison to the previous models (such as 
Ghaboussi et al. [9]). 
 

3. MECHANICAL BEHAVIOR OF THE JOINT 
 

Normal, shear, dilational behavior and failure criteria of a joint play a significant role in its numerical 
analysis. Therefore these are explained in this section and the related formulas are presented. Figure 2 
represents the normal, shear and dilational behavior of a joint. 
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displacement corresponding to the peak shear stress (UP) to the displacement relevant to residual stress 
(UR). The magnitudes B0 and M were selected 0.6 (according to Goodmans‘s suggestion [10]) and 1.5 
(according to Indraratna & Haque [12]), respectively. 
    

τୖ ൌ τ୔ ቀB଴ ൅
ଵି୆బ
୯బ

σቁ                                        (5) 
    

Uୖ ൌ M ൈ U୔                    (6) 
 

The dilation behavior of the joint must be defined based on the relations (7) and (8). These equations 
are based on the simplifications being made in Fig. 2c, where σn is normal stress, qu is unconfined 
compressive strength, i is dilation angle, ΔU is shear displacement, UR is the displacement relevant to the 
residual stress R,  and Ks are shear stress and shear stiffness, respectively [10]. 
    

∆V୧ሺτሻ ൌ ቀ஢౤
୯౫
െ 1ቁ

ସ
tan i ቀ|∆U| ൅ ቚ த

୩౩
ቚቁ 							for							uୖሺെሻ ൑ ∆U ൑ uୖሺ൅ሻ                     (7) 

    

∆V୧ሺτሻ ൌ ቀ஢౤
୯౫
െ 1ቁ

ସ
tan i ቀuୖሺ൅ሻ ൅ ቚ த

୩౩
ቚቁ 						for						uୖሺെሻ 	൒ ∆U	, ∆U ൒ uୖሺ൅ሻ                 (8) 

 
It is assumed that sliding along the fault will begin at the peak shear strength of the fault. Therefore, 

accurate definition and determination of this parameter is very important. For this purpose, a non-linear 

failure criterion presented by Ladanyi-Archambault is chosen according to Eq. (9): 

τP=
σ൫1-as൯·൫Vሶ + tanφ൯+as·SR

1-൫1-as൯×Vሶ × tanφ
                                                              (9) 

    
In this equation, σ is the initial normal stress of the fault, as is the proportion of joint area sheared through 
the asperities, Vሶ  is the dilation rate at the peak shear stress, φ is the friction angle and SR is shear strength 
of the rock material [13]. 
 

4. APPLICATION OF THE PROPOSED MODEL IN ANALYSIS OF FAULT  
BEHAVIOR CROSSING A TUNNEL 

 
In this section, the model described above is applied to study fault behavior passing through a tunnel (see 

Fig. 3a). A computer program was developed using MATLAB software called FEAFB (Finite Element 

Analysis of Fault Behavior) based on the finite element method. This program performs the analysis on 

the basis of the joint model presented in Fig. 1. However, it is required to input the geometry of the model, 

number of elements and nodes, type of elements and their initial stresses. This process is prepared in a pre-

modeling using ABAQUS program and is linked to FEAFB.  
 
a) Material properties 
 

Rock properties were selected as presented in Table 1, whereas the fault properties were presented in 
Table 2. It should be noted that rock mass is assumed elastic and isotropic since analysis of rock behavior 
is not the major purpose in this paper. 
    

Table 1. Geotechnical properties of the intact rock surrounding the tunnel 
    

Cohesion, C 
(MPa) 

Friction Angle,  
(degree) 

Tensile strength 
 (MPa) 

Poisson `s 
ratio,  

Modulus of 
elasticity , E 

(GPa) 

Density 
(Kg/m³) 

8 45 3 0.25 20 2600 
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asperities. Furthermore, the effect of dilation is considered in the proposed joint element. A computational 
efficient software was developed for the numerical analysis based on the proposed model, and the 
behavior of a fault crossing a tunnel was analyzed for different horizontal to vertical stress ratios. The 
results are consistent with a similar modeling in UDEC. The results reveal that the combination of a slider 
and a shear spring provides more accurate results for the plastic region compared to the other joint models 
which only use an elastic shear spring. 

The normal and shear stresses and shear strength have higher values in the fault elements near the 
tunnel surface. This is because of the uniaxial condition of the fault elements adjacent to the tunnel 
surface, while there is a triaxial condition in the other points. It is interesting that shear stress is higher 
where the in-situ horizontal to vertical stress ratios are equal. But safety factor depends on the horizontal 
to vertical stress ratio and decreases as it becomes far from the tunnel surface, however, the horizontal to 
vertical stress ratio is not equal to unity. Nevertheless, its values generally are higher than the relevant 
values, where the horizontal to vertical stress ratio is not equal to 1.  
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