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Abstract— In this paper, the behavior of a fault is studied using a constant strain joint model. A
combination of slider and spring is used to simulate the shear behavior of faults in the plastic
region in contrast to the previous models that have only used an elastic shear spring. Furthermore,
the proposed joint element was used to study the behavior of a fault crossing a tunnel regarding the
represented shear plastic and dilation behavior of this joint element, and for this purpose a Matlab
based program called FEAFB (Finite element analysis of fault behavior) has been developed. The
corresponding normal and shear stresses, shear strengths and the factors of safety, for different
horizontal to vertical stress ratios and shear stiffness are analyzed and compared to the results of a
similar modeling in UDEC program. The analysis indicates that the normal and shear stresses, and
the shear strength are increased in the fault elements near the tunnel, and they are decreased in the
elements becoming far from the tunnel surface. However, the safety factor can either increase or
decrease as it becomes closer to the tunnel surface, depending on the horizontal to vertical stress
ratio. Moreover, it is also shown that safety factor depends upon the shear stiffness, i.e., as shear
stiffness increases, shear stress increases, and as a result, the safety factor decreases.
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1. INTRODUCTION

Discontinuities, such as cracks, joints and faults, play a significant role in the behavior of rock masses and
can alter the distribution of stresses and deformations. The effect of discontinuities, particularly faults,
where passing near a tunnel may influence the stability of the tunnel dramatically; hence, consideration of
the fault effects on the stability analysis and design of tunnels is of paramount importance.

In this paper, a joint element, depicted in Fig. 1, is presented which is based on the finite element
method, and consists of two double nodal linear elements. This joint element includes a normal spring
which models a normal stiffness of K, and is connected to a no-tension element,. Moreover, the elastic
shear behavior of the fault is modeled by an elastic shear spring with stiffness K;,

The main contribution in this study is the modeling of the plastic shear behavior of the fault with
combination of an additional shear spring and a slider to represent the shear and dilation behavior of the
fault while asperities sheared off in contrast to previous models which have considered only an elastic
shear stiffness. This new element is used to analyze the shear and normal stresses, shear strength, and the
safety factor of a fault in the vicinity of a tunnel. The analysis is based on the Ladanyi-Archambault
failure criterion.

Goodman and Taylor [1] were the first authors who modeled the shear and normal behavior of a
discontinuity using a joint element, based on finite element method, but this model is basic and only an
elastic shear spring has been applied, however, it has some limitations on the problem geometry and
boundary conditions which can result in numerical difficulties.
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Fahimifar [2] used the joint element proposed by Goodman [1] for analysis of jointed rock specimens
under triaxial loading condition, numerically. He also studied the effects of schistosity of a typical rock
(Isfahan schist) experimentally for various anisotropic angles [3]. The effects of joint orientation on the
stress and strain properties of jointed specimens and the time influence on the rock joints were also
investigated by Fahimifar [4 and 5].

J. G. Wang et al presented a constitutive model to predict the behavior of rock joints based on limit
concept. This interface model employs a non-proportional ellipse yield function that is different from
other yield functions adopted in soil mechanics. The shear behavior in this model transfers to residual after
elastic stage [6].

More recently, J. H. Wu et al simulated the mechanical behavior of inclined jointed rock masses
using Discontinuous Deformation Analysis (DDA) during tunnel construction. In this analysis, the stress
distribution and surface subsidence near inclined jointed rock masses are investigated. The inclined rock
joints have been modeled using an elastic normal spring and an elastic-residual shear spring [7].

2. MODEL DEFINITION

The model depicted in Fig. 1 is proposed by the authors to study the normal, shear, torsion, and dilation
behavior of a discontinuity of length L. The constant strain joint element is composed of two double nodal
line elements [8].

Block A
0.5L | 0.5L 1
L K
L Kz
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Fig. 1. The proposed joint model [8]

The normal behavior is modeled with a spring in the normal direction that provides normal stiffness
(K,) in compression while having no tension strength. Moreover, an elastic shear spring with stiffness of
K, is used in combination with another shear spring of stiffness K, and a slider (Mandel Model) to model
shear behavior of the joint element. Using this combination, the presented joint element is capable of
modeling the plastic regime of the shear behavior of a joint to simulate breaking of the asperities, and
therefore, the plastic and the residual phases are considered for the shear behavior of a fault in this joint
model. It is worthy to mention that in the previous model presented by Goodman, the shear behavior is
demonstrated only by a shear spring for the elastic part [1and 8].

This joint element is able to model the plastic behavior of a discontinuity such as a fault by a
combined analytical-numerical approach, and based on the fact that the material property matrix does not
have any off-diagonal coefficient. So, the possibility of numerical ill-conditioning of stiffness matrix
which might occur because of very large off-diagonal terms or very small diagonal terms reduces
considerably. Also, dilation is considered in this model in comparison to the previous models (such as
Ghaboussi et al. [9]).

3. MECHANICAL BEHAVIOR OF THE JOINT

Normal, shear, dilational behavior and failure criteria of a joint play a significant role in its numerical
analysis. Therefore these are explained in this section and the related formulas are presented. Figure 2
represents the normal, shear and dilational behavior of a joint.

I1JST, Transactions of Civil Engineering, Volume 37, Number C2 August 2013



Numerical analysis of fault behavior... 339

[y fimses Th I\ ()
" Vim
-
— ® W | Kl -
1 {;_— = Bahavior Modl
/ Ks i
. 'T | i Y E
f'! Vel : Au(x)
| ' ] iy
Ue Ur Us Uy
(@@ (b) ©

Fig. 2. Mechanical behavior of a joint element (a) Normal Behavior
(b) Shear behavior (c) Dilational Behavior [10]

The joint behavior diagram under vertical stress is shown in Fig. 2a. The normal stress o, the seating
pressure & defining the initial condition for measuring the normal deformation, the joint vertical
displacement AV, and the maximum value of joint closing V,, due to initial stress are related according to
Eq. (1). Meanwhile, normal stiffness is computed according to Eq. (2), and depends on the initial normal
stress 6y and the maximum closing of the joint V. [10].

n = (Vr:YAV B 1)é (1)
—6,2
Kl’l = éxvmc (2)

The idealized model for shear behavior is as shown in Fig. 2b [10]. The model includes an elastic
stage with slope K;. When shear stress reaches its peak value Tp, the asperities on the fault surface start to
shear off. As displacement increases, the roughness of the fault surface reduces until the shear stress drops
to the residual stress called Tg. Beyond that point, the shear stress remains constant as displacement
increases [11].

To consider the shear behavior of the fault, a composition of two springs and a prefect plastic slider is
used in which the slider ultimate strength is defined equal to the peak shear stress of the fault (Tp). The
stiffness of the spring 1 is equal to K and the stiffness of spring 2 is calculated using equation 3, where
Kpr is the gradient of the plastic part of shear behavior diagram in accordance with Eq. (4). In the
proposed combination, the slider has a solid behavior before reaching the peak shear stress (Tp);
consequently, the spring 2 does not affect the model; and so the overall stiffness of the joint element in the
elastic part is equal to the stiffness of spring 1. In the proposed joint model, after reaching the peak shear
stress, the indicated slider becomes plastic and starts to displace. As a result, the shear stiffness equal to
Kp.r is applied to the system by both springs in the presented combination and in this way, the plastic
regime of the shear behavior is simulated. [8]

KSXKP—R
K, = —S~—_P-R 3
2 7 Ks—Kp-r )
Tp—T
Kp_g = —U:_UI; “4)

The peak shear stress (tp) and the residual shear stress (tg) are calculated according to Egs. (9) and
(5), respectively, where By is the ratio of peak shear stress to residual shear stress at low normal stresses.
Moreover, Up is the relevant displacement for the peak shear stress and Uy is the relevant displacement for
the residual stress that was defined earlier. Uy is calculated using Eq. (6), where M is the ratio of the
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displacement corresponding to the peak shear stress (Up) to the displacement relevant to residual stress
(Ur). The magnitudes By and M were selected 0.6 (according to Goodmans‘s suggestion [10]) and 1.5
(according to Indraratna & Haque [12]), respectively.

1-B
TR = Tp (BO + qoo 0) ©)
UR = M X Up (6)

The dilation behavior of the joint must be defined based on the relations (7) and (8). These equations
are based on the simplifications being made in Fig. 2c¢, where o, is normal stress, g, is unconfined
compressive strength, i is dilation angle, AU is shear displacement, Uy is the displacement relevant to the
residual stress T, T and K are shear stress and shear stiffness, respectively [10].
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n
qu
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It is assumed that sliding along the fault will begin at the peak shear strength of the fault. Therefore,
accurate definition and determination of this parameter is very important. For this purpose, a non-linear
failure criterion presented by Ladanyi-Archambault is chosen according to Eq. (9):

. G(l-as)-(V+ tan <p)+aS'SR
T 1—(1—as)x\'/X tan @ (9)

In this equation, o is the initial normal stress of the fault, a; is the proportion of joint area sheared through
the asperities, V is the dilation rate at the peak shear stress, ¢ is the friction angle and Sy is shear strength
of the rock material [13].

4. APPLICATION OF THE PROPOSED MODEL IN ANALYSIS OF FAULT
BEHAVIOR CROSSING A TUNNEL

In this section, the model described above is applied to study fault behavior passing through a tunnel (see
Fig. 3a). A computer program was developed using MATLAB software called FEAFB (Finite Element
Analysis of Fault Behavior) based on the finite element method. This program performs the analysis on
the basis of the joint model presented in Fig. 1. However, it is required to input the geometry of the model,
number of elements and nodes, type of elements and their initial stresses. This process is prepared in a pre-
modeling using ABAQUS program and is linked to FEAFB.

a) Material properties

Rock properties were selected as presented in Table 1, whereas the fault properties were presented in
Table 2. It should be noted that rock mass is assumed elastic and isotropic since analysis of rock behavior
is not the major purpose in this paper.

Table 1. Geotechnical properties of the intact rock surrounding the tunnel

Density é\li:?ilcl}tls 012 Poisson 's Tensile strength | Friction Angle, ¢ Cohesion, C
(Kg/m3) ( GP;/) ’ ratio, v (MPa) (degree) (MPa)
2600 20 0.25 3 45 8
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Table 2. Geotechnical properties of the fault

o | o | Ssumen, | D | Foew T e [y, ]
(MPa) (MPa) (GPa) (degree) (degree) (MPa) (m) (MPa)
100 0 0.2 9 35 0 0.01 0.05

b) Geometry and model description

The angle of the fault in this model is equal to 75 degrees to the horizontal. Moreover, the radius of
the tunnel is equal to 5 meters, while it is located in the center of a 100x100 meter block. Subsequently,
the horizontal displacement of the block has been constrained on the left and right sides. It is interesting to
note that the center of the tunnel is located at a depth of 380 meters, where the vertical stress is almost 10
MPa and the ratio of horizontal to vertical stresses (K) is considered 0.5,1 and 2(Fig. 3).

(@) (b)

Fig. 3. (a) Fault model crossing the tunnel (b) Element numbers of the fault crossing the tunnel

5. NUMERICAL RESULTS

For the purpose of studying the effect of a fault crossing a tunnel using the proposed model, normal stress
( ©), shear stress (t), shear strength (1,) and factor of safety (Ratio of 1, to T which named safety factor)
corresponding to 10 elements (Fig. 3b) were calculated using FEAFB program. The results obtained were
compared with the results using UDEC program (Version 4.00).

Figure 4 shows the calculated parameters with shear stiffness equal to 0.2 GPa, and for horizontal to
vertical stress ratios (K) equal to 0.5, 1 and 2, respectively, through the analyses performed using the
FEAFB program and UDEC code. As it is observed, the results are similar. The difference between the
results is mostly due to the difference of joint lengths in UDEC and FEAFB. Furthermore, Mohr-Coulomb
failure criterion was used in UDEC, whereas in FEAFB program, Ladanyi-Archambault relation was used
as the failure criterion.

It is observed that the magnitude of normal stress in the elements nearer to the tunnel surface is
higher than that in the far elements. It may be due to the decrease in the confinement effect and lack of
triaxial condition nearer the tunnel surface. Furthermore, the calculated normal stress increases with
increase in K, because the horizontal stress affecting on the fault elements increases. However, it depends
on the fault angle and will be different in various angles.

Meanwhile, the shear stress in the top of the tunnel decreases in the elements near the tunnel surface
and increases in the bottom of tunnel in the similar elements. The direction of shear stress changes with
increase in K since the greater stress will be vertical for K=0.5, and when K is equal to 2, the greater
component will be horizontal. It is important to mention that while the horizontal and vertical stresses are
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equal, the shear stress behavior in the elements on the top and bottom of the tunnel is the same, and even
the corresponding shear stress values are approximately equal.

It is also observed that the shear strength magnitudes obtained through the FEAFB program are
greater than the corresponding values in UDEC program. It is implied that Ladanyi- Archambault criterion
leads to higher values in contrast to Mohr-coulomb criterion. Moreover, it is seen that normal stress
increases considerably as K increases, however, they decrease by becoming far from the tunnel surface
and then approach a constant value.

When K is equal to 0.5 and 2, safety factors in the fault elements near the tunnel surface have higher
values than the elements that are far from the tunnel surface; however, for the case of equal horizontal to
vertical stresses (K=1), safety factor reduces as it approaches to the tunnel surface and there are lower
safety factors near the tunnel. But, the safety factor is generally higher for values of K=1 in comparison to
the values of K opposite to unity. It should be noticed that, the elements near the tunnel surface (elements
5 & 6) have minimum safety factors for the condition of K=1 but these safety factors are still greater than
the safety factors for the condition of K opposite to unity. This may be attributed to the fact that for the
condition of K=1, deviatoric stresses tend to zero.

K=0.5 K=1 K=2
. ?‘W‘“ — — I. — — 1.mm r - . nmm
£ | 700es0e | ﬁk N o T N N S 5 A ooy /JT\
# | 6.50E+06 1 1.40E+07 - ! | | |
B VANR R = By ~l 300E407 RN || +ubEc
@A | ssoee0s¥ ||| T ! | s i TR 8 2508407 | AW :
g | sooer0s )k"‘-k':. Gnceins et om0 - ¥—¢—y -=-FEAFB
E 4.50906[{ - | - 6.00E406 —— N — | - 1,5ngml"" + i —— .l
Z | apoe+06 L L 111 4006406 1006407
2.00€+06 8.00EH05 —— 00406 T R = l -
= | 1806406 6.006405 3 4 § 1
< [ ; b ey Nl
£ | 1408406 +———+ /f\-\-_' = 2006405 +— -2.006406 // f
£ | 1200006 i o0ksc0 |- P - e ~*+UDEC
| 100406 1 /i -2.006+05 § !WF.-H‘!S' \{/ | | | =fEAFB
E 8.00£+05 ~J/ -4.00E405 - V
= | 6.00E+05 - -6.D0E+05 -3.506+06 — 1
@ [ _ vl | |
4,00E405 8005405 -4.00E+06
"; 9.00E+06 1.90E407 T T T 3.90e+07 i T | T
Gy | amens I ] - 340407 +———1 A
5 | s/ e T T ARKI ] 2w :
£ | 70006 N 1a0er07 LA XC 2408407 / { \ | | ---UDEC
Z | es0ev0s i N 130407 1 ¥ | h'-’._:ll
'-f 6.006406 1w |/ A 1.20e+07 B 1 1308407 ] | | -=-FEAFB
; 5.506+06 A \{ 1 :-xg; ; 140E+07 - |
7 | so0e+0s ! 9.00E406 * ! 9.00E+06 s
100
14 T T [ 25
R o AT ik \ 1 | //' - AR --UDEC
E : \\ & 40 \k | 10 B _a— \\ ~a -=-FEAFB
= \[ N * Y
2 | 1 L 5 |
[ e 0 :
123456780910 12345678910 123465678810
Element Number Element Number Element Number

Fig. 4. Results of analyses for a fault with shear stiffness of 0.2 GPa

6. SUMMARY & CONCLUSIONS

A new joint model was presented for fault analysis. This constant strain joint element uses a combination
of a slider and a shear spring to model the shear behavior in the plastic region regarding shearing of the
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asperities. Furthermore, the effect of dilation is considered in the proposed joint element. A computational
efficient software was developed for the numerical analysis based on the proposed model, and the
behavior of a fault crossing a tunnel was analyzed for different horizontal to vertical stress ratios. The
results are consistent with a similar modeling in UDEC. The results reveal that the combination of a slider
and a shear spring provides more accurate results for the plastic region compared to the other joint models
which only use an elastic shear spring.

The normal and shear stresses and shear strength have higher values in the fault elements near the
tunnel surface. This is because of the uniaxial condition of the fault elements adjacent to the tunnel
surface, while there is a triaxial condition in the other points. It is interesting that shear stress is higher
where the in-situ horizontal to vertical stress ratios are equal. But safety factor depends on the horizontal
to vertical stress ratio and decreases as it becomes far from the tunnel surface, however, the horizontal to
vertical stress ratio is not equal to unity. Nevertheless, its values generally are higher than the relevant
values, where the horizontal to vertical stress ratio is not equal to 1.
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