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Abstract– In this article, a model of anisotropic damage coupled to plasticity based on 
thermodynamics framework is proposed. This model is introduced to describe the plastic and 
damage behavior of metals adequately. According to the elastic energy equivalence hypothesis 
between the undamaged material and the damaged material, the constitutive equations for the 
material in damaged configuration are written. The damaged material is modeled using the 
constitutive laws of the undamaged material in which the stresses in undamaged configuration are 
mapped by the stresses in damaged configuration. The damage is proposed through a damage 
mechanics framework, and the material degradation is determined by utilizing an anisotropic 
damage measure. In developing constitutive model, a plastic yield surface is used to demonstrate 
the onset of plasticity, and a damage surface is used to demonstrate the onset of damage. 

The plastic relationships have been written in undamaged configuration, and by using 
relationships between damaged and undamaged configurations, plastic equations are extended to 
damaged configuration. 

Numerical simulations of the elastoplastic deformation behavior of hydrostatic stress 
sensitive metals demonstrate the efficiency of the formulation, and also show the physical effects 
of parameters of the model. In order to achieve an equilibrated global solution, a nonlinear finite 
element program that employs a Newton Raphson iteration procedure is applied. Finally, the 
numerical results of some examples are validated with the existing experimental measurements.           
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1. INTRODUCTION 
 

Inelastic deformations in polycrystalline metals are accompanied by internal damage that is dependent on 

the growth of microdefects - microvoids, microcracks - in material [1-2]. Theses damage processes begin 

in some states of deformation, and its evolution depends mainly on the state of stress and strain.  

       Growth of microdefects will influence the elastic and plastic properties of the material; and this 

change of material characteristics such as elasticity modulus was not considered in classical plasticity 

theory. However, by using damage models, this modification can be considered. Anisotropic damage 

models require using continuous mechanics besides thermodynamics framework and kinematic variables. 

Combinations of plasticity and damage are usually based on isotropic hardening combined with one of the 

damage variables - isotropic, vectorial, or anisotropic damage. Based on effective strain in damaged 

materials, Kachanov [3] proposed primary concept of continuum damage mechanics; thus, researchers 

have chosen isotropic damage due to its simplicity and efficiency [3-5], axial vector representation of 

damage variables [6], and second order damage tensor [7-9]. 
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           Damage and plastic deformation in materials have interaction with each other, which should be 
considered in modeling. In this paper, two surfaces including damage and plastic surfaces with a non-
associated flow rule for plastic surface and an associated flow rule for damage surface are adopted.  
 

2. ANISOTROPIC DAMAGE MODEL 
 
Anisotropic damage can be used to model specific void and crack surfaces, specific crack and void 
volumes, or the spacing between cracks or voids. Increase in stress and deformation in metals leads to 
growth in microdefects that influences the elastic and plastic properties of the material. In this research, 
the plasticity theory has been applied to create consistency equations in undamaged configuration. These 
equations are extended to damage configuration by using relationships between undamaged and damaged 
configurations that Cordebois and Sidoroff [10] originally proposed. 
         In this model, two different types of configurations are utilized, including undamaged configurations 
and damaged ones. The former one is designated by superimposed dash, and the latter is designated 
without superimposed dash. Generally, the relationship between undamaged and damaged configuration in 
material is presented as follows [10-11]: 
 

ത௜௝ߪ ൌ  ሺ1ሻ																																																																																					௞௟ߪ௜௝௞௟ܯ
 
where ߪ௞௟ is stress tensor in damaged configuration, ߪത௜௝ is stress tensor in undamaged configuration, and 
M୧୨୩୪ is fourth order damage effect tensor. In the present work, it is preferable to utilize fourth order 
damage effect tensor presented by Cordebois and Sidoroff [10]: 
 

௜௝௞௟ܯ ൌ
1
2
൫ߜ௜௟ݓ௞௝ ൅  ሺ2ሻ																																																																						௞௝൯ߜ௜௟ݓ

 
௜௝ݓ ൌ ሺߜ௜௝ െ ߮௜௝ሻିଵ																																																																													ሺ3ሻ 

 
where δij is the Kronecker delta, and ߮௜௝ is second order damage tensor. For a general case of anisotropic 
damage, the second order damage tensor can be written in terms of damage densities [12]: 
 

߮ ൌ ൥
߮ଵଵ ߮ଵଶ ߮ଵଷ
߮ଶଵ ߮ଶଶ ߮ଶଷ
߮ଷଵ ߮ଷଶ ߮ଷଷ

൩ ൌ ൦

݀ଵ ඥ݀ଵ݀ଶ ඥ݀ଵ݀ଷ
ඥ݀ଶ݀ଵ ݀ଶ ඥ݀ଶ݀ଷ
ඥ݀ଷ݀ଵ ඥ݀ଷ݀ଶ ݀ଷ

൪																																																			ሺ4ሻ 

 
Where ݀௜ is microcracks density in i direction, and is described by the ratio of microcracks total area 

to surface total area whose unit normal is ݊௜. 
        The concept of elastic strain energy equivalence in undamaged and damaged configurations, firstly 
proposed by Chow and Wang [13], was applied to get stiffness tensor in damaged configurations: 
 

1
2
௜௝ߝ௜௝ߪ

௘ ൌ
1
2
௜̅௝ߝത௜௝ߪ

௘ 																																																																															ሺ5ሻ 
 
With respect to generalized Hooke's law, the relation between stress and strain of isotropic material in 
elastic part for both configurations is expressed as follows: 
 

ത௜௝ߪ ൌ ௞̅௟ߝത௜௝௞௟ܧ
௘ 																																																																																			ሺ6ሻ 

 
௜௝ߪ ൌ ௞௟ߝ௜௝௞௟ܧ

௘ 																																																																																		ሺ7ሻ 
 
By substituting Eqs. (6) and (7) into Eq. (5), stiffness tensor in damaged configuration is obtained: 
 

௜௝௞௟ܧ	 ൌ ௜௝௠௡ܯ
ିଵ ௣௤௞௟ܯത௠௡௣௤ܧ

ି் 																																																																							ሺ8ሻ 
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By substituting Eqs. (6) and (7) into Eq. (1) and replacing 	ܧ௜௝௞௟  from Eq. (8), the expression between 
elastic strain tensors in undamaged and damaged configurations can be obtained as follows: 
 

௜̅௝ߝ
௘ ൌ ௜௝௞௟ܯ

ି் ௞௟ߝ
௘ 																																																																																	ሺ9ሻ 

 
where elastic strain tensor in damaged configurations (ε୧୨

ୣ ) is the reversible part of strain in damaged 
configuration.  
 

3. FRAMEWORK OF IRREVERSIBLE PROCESS 
 
For the formulation of the constitutive and evolution equations of elastic, plastic and damage in materials, 

irreversible thermodynamics theory has been employed as a rational framework [14, 6]. 

In this research, thermodynamics operator based on the free potential proposed by Helmholtz is 

applied. These operators are presented in constant temperature. Clausius–Duhem inequality in isothermal 

condition can be written as follows [14]: 
 

ሶ௜௝ߝ௜௝ߪ െ ߩ ሶ߰ ൒ 0																																																																											ሺ10ሻ 
 
This inequality implies internal entropy production in an irreversible process, where ψ is Helmholtz free 
energy function that can be explained in terms of suitable internal state variables. In this work ψ is 
assumed to be a function of elastic strain tensor, equivalent plastic strain, second order damage tensor, and 
equivalent damage variable: 
 

߰ ൌ ߰൫ߝ௜௝
௘ , ,௘̅௣ߝ ߮௜௝, ߮௘௤൯																																																															ሺ11ሻ 

 
In this equation, elastic strain tensor (ߝ௜௝

௘ ) characterizes the behavior of elastic strain that represents 
reversible part of deformations. Equivalent plastic strain ሺߝ௘̅௣ሻ characterizes the plasticity isotropic 
hardening accumulated strain that represents irreversible part of deformations without taking into account 
generation and propagation of microdefects. Second order damage tensor ሺ߮௜௝ሻ characterizes anisotropic 
damage in material that represents generation and propagation of microdefects. Equivalent (accumulated) 
damage variable	ሺ߮௘௤ሻ characterizes accumulated isotropic damage hardening that represents accumulated 
microdefects in material. 

By taking time derivative of Eq. (11), substituting it into Eq. (10), and separating its reversible and 
irreversible parts, its reversible part can be obtained as follows: 
 

௜௝ߪ ൌ ߩ
߲߰
௜௝ߝ߲

௘ 																																																																																ሺ12ሻ 

 
where ρ implies mass density; also, irreversible part leads to representing thermodynamic conjugate forces 
(Yij, K ,̅ܥ) that are respectively dependent on internal state variables (߮௜௝, ߮௘௤, ߝ௘̅௣) [15]: 
 

௜ܻ௝ ൌ െߩ
߲߰
߲߮௜௝

, ܭ ൌ ߩ
߲߰
߲߮௘௤ , ܥ̅ ൌ ߩ

߲߰
௘̅௣ߝ߲

																											ሺ13ሻ, ሺ14ሻ, ሺ15ሻ 

 
By defining mechanical flux vector (J), vector of conjugate forces (X) is expressed as follows:  
 

ܬ ൌ ሶ௜௝ߝቄߩ
௣ , ሶ߮ ௜௝, െ̅ߝሶ௘௣, െ ሶ߮ ௘௤ቅ

்
																																																													ሺ16ሻ 

 
ܺ ൌ ൛ߪ௜௝, ௜ܻ௝, ,̅ܥ ݇ൟ																																																																													ሺ17ሻ 

 
Rate of entropy production can be expressed as the scalar product of X and J as follows: 
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ሶ௜௝ߝ௜௝ߪ െ ߩ ሶ߰ ൌ ܺ. ܬ ൒ 0																																																																						ሺ18ሻ 
 
However, if a component of J (ܬ௞) is assumed to be only a function of the corresponding thermodynamic 
force of X (ܺ௞), the existence of dissipation potential functions can be proved [16]. 
 

௣ܨ ൌ ,௜௝ߪ௣ቀܨ ,̅ܥ ሶ௜௝ߝ
௣ , ߝ ̅ሶ௘௣ቁ																																																																ሺ19ሻ 

 
݃ ൌ ݃൫ ௜ܻ௝, ,ܭ ሶ߮ ௜௝, ሶ߮ ௘௤൯																																																																		ሺ20ሻ 

 
where ܨ௣and  ݃ are plastic and damage potential function, thus, ܬ௞ can be expressed as follows [16]: 
 

ሶ௜௝ߝ
௣ ൌ ሶ௣ߣ

௣ܨ߲

௜௝ߪ߲
, ሶ߮ ௜௝ ൌ ሶௗߣ

߲݃
߲ ௜ܻ௝

, ߝ ̅ሶ௘௣ ൌ ሶ௣ߣ̅
௣ܨ߲

ܥ߲̅
, ሶ߮ ௘௤ ൌ ሶௗߣ

߲݃
ܭ߲

														ሺ21ሻ, ሺ22ሻ, ሺ23ሻ, ሺ24ሻ 

 
where ߣሶ௣ and	ߣሶ ௗare the plastic and damage loading factors that are known as the Lagrangian plasticity and 
damage multipliers, and can be obtained by plastic and damage consistency condition. 
 

4. HELMHOLTZ FREE ENERGY FUNCTION 
 
Helmholtz free energy function (߰) is a portion of internal energy that is available for doing work at 
constant temperature. This function can be expressed as follows [14]: 
 

߰ ൌ ݑ െ  ሺ25ሻ																																																																																					ߠݏ
 
where u determines the specific internal energy, s is entropy and θ is the temperature. As it was mentioned 
in previous sections, increase in stress and deformation in material leads to growth of damage that 
influences the elastic and plastic properties of the material. Therefore, elastic strain energy of material is 
dependent on elastic strain and material damage [2]. 
         In this research, Helmholtz free energy function has been assumed in three parts, including elastic, 
plastic, and damage. As it has been mentioned, elastic part is a function of elastic strain tensor (ߝ௜௝

௘ ) and 
second order damage tensor ሺ߮௜௝ሻ. Plastic and damage parts have been respectively assumed as functions 
of equivalent plastic strain (ߝ௘̅௣) and equivalent damage variable (߮௘௤) [12, 17]: 
 

௜௝ߝ൫߰ߩ
௘ , ߝ ̅௘௣, ߮௜௝, ߮௘௤൯ ൌ ߰ߩ	

௘
൫ߝ௜௝

௘ , ߮௜௝൯ ൅ ߰ߩ	
௣
ሺߝ௘̅௣ሻ ൅ ߰ߩ

ௗ
ሺ߮ୣ௤ሻ																											ሺ26ሻ 

 
a) Elastic part of Helmholtz free energy function: 
 

To express elastic part of Helmholtz free energy function, elastic energy equality law proposed 
by Cordebois and Sidoroff  [10] and expanded by Voyiadjis et al. [12] is used. 
 

߰ߩ
௘
൫ߝ௜௝

௘ , ߮௜௝൯ ൌ
1
2
௜௝௞௟ܧ௜௝ߪ

ିଵ  ሺ27ሻ																																																																							௞௟ߪ
 
By using Eqs. (13) and (8), thermodynamic conjugate force of second order damage tensor (߮௜௝), that is 

௜ܻ௝, is expressed as follows: 
 

௥ܻ௦ ൌ െߩ
߲߰
߲߮௥௦

ൌ െ
1
2
௜௝ߪ

௜௝௞௟ܧ߲
ିଵ

߲߮௥௦
 ሺ28ሻ																																																														௞௟ߪ

 
Solving Eq. (28) leads to the definition of Yrs: 
 

௥ܻ௦ ൌ െ
1
2
௜௝ߪ ቆ

௜௝௠௡ܯ߲
்

߲߮௥௦
ത௠௡௣௤ିଵܧ ௣௤௞௟ܯ ൅ ௜௝௠௡ܯ

் ത௠௡௣௤ିଵܧ
௣௤௞௟ܯ߲

߲߮௥௦
ቇߪ௞௟																												ሺ29ሻ 

 
Moreover, with respect to ܯ௜௝௞௟ which is a symmetric tensor, ௥ܻ௦can be written as: 
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௥ܻ௦ ൌ െߪ௜௝
௜௝௠௡ܯ߲

߲߮௥௦
ത௠௡௣௤ܧ
ିଵ  ሺ30ሻ																																																						௞௟ߪ௣௤௞௟ܯ

 
b) Plastic part of Helmholtz free energy function:  
 

The plastic part of Helmholtz free energy function expresses increase of free energy that is dependent 
on isotropic hardening in plastic deformation. For polycrystalline metals, plastic part of Helmholtz free 
energy function can be written as [18]: 
 

௘̅௣ሻߝ௣ሺ߰ߩ ൌ ܳ ൬ߝ௘̅௣ ൅
1
ܿܤ

݁ି஻௖ఌത
೐೛
൰																																																								ሺ31ሻ 

 
where ܳ and ܿܤ are material constants. 

Substituting Eq. (15) into Eq. (31), thermodynamic conjugate force of ߝ௘̅௣, which is ̅ܥ, can be 
obtained as follows: 
 

ܥ̅ ൌ ߩ
߲߰
௘̅௣ߝ߲

ൌ ܳ൫1 െ ݁ି஻௖ఌത
೐೛
൯																																																																				ሺ32ሻ 

 
c) Damaged part of Helmholtz free energy function 
 

The damaged part of Helmholtz free energy function is assumed to be a linear relationship between 
equivalent damage variable (߮௘௤) and its thermodynamic conjugate force (ܭ): 
 

ௗሺ߮௘௤ሻ߰ߩ ൌ
1
2
 ሺ33ሻ																																																																						ௗሺ߮௘௤ሻଶܭ

 
By substituting Eq. (14) into Eq. (33), thermodynamic conjugate force of equivalent damage variable 
(߮௘௤), which is K, can be obtained as follows: 
 

ܭ ൌ ߩ
߲߰
߲߮௘௤

ൌ  ሺ34ሻ																																																																				ௗ߮௘௤ܭ

 
5. ELASTOPLASTIC MODEL 

 
Plasticity theory is used to express the behavior of various solids. In plasticity theory, a yield criterion is 
an assumption about determining the onset of the plastic deformation in material, and consistency 
condition imposes a restriction on the relationship between the stress and plastic strain tensor. 
 
a) Plastic yield surface: 
 

Spitzig et al. [19] carried out experimental studies on the effect of superimposed hydrostatic stress on 

the deformation behavior of metals, and Spitzig and Richmond [20] have shown that the flow stress 

depends approximately linearly on hydrostatic stress state. In this work, the model of Spitzig et al. [19] is 

extended to anisotropic damage by using two loading surfaces: one for plasticity and another for damage. 

Hence, the plastic yield condition of the iron base materials is as follows: 
 

݂൫ߪത௜௝, ௘̅௣൯ߝ ൌ ටܬଶ̅ െ ሺ1 െ ሺ̅ఌത೐೛ሻܥଵ̅ሻܫߙ ൌ 0																																																			ሺ35ሻ 
 
where ܬଶ̅ ൌ ௜௝ݏ௜௝̅ݏ̅ 2⁄  is second invariant of the deviatoric stress tensor. ̅ݏ௜௝ ൌ ത௜௝ߪ െ ௜௝ߜത௞௞ߪ 3⁄  is deviatoric 

stress tensor. ܫଵ̅ ൌ ௘̅௣ߝ .ത௜௜ is first invariant of the stress tensorߪ ൌ ׬ ݐሶ௘௣݀̅ߝ
௧
଴  is equivalent (accumulated) 

plastic strain. ߙ is material constant, and ̅ܥ is expressed by Eq. (32) in terms of ߝ௘̅௣. 
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b) Non-associated flow rule 
 

Incremental plastic strain vector in the strain space is normal to plastic potential function (ܨ௣). 
 

ሶ௜௝̅ߝ
௣ ൌ ሶ௣ߣ̅

௣ܨ߲

ത௜௝ߪ߲
																																																																													ሺ36ሻ 

 
Thus, the plastic potential function (ܨ௣) is also formulated in terms of the stress tensor in undamaged 
configuration. In damaged metals, irreversible volumetric strains are mainly caused by damage, and 
volumetric plastic strains are negligible in comparison [19]. Thus, the plastic potential function is 
expressed as follows: 
 

௣ܨ ൌ ටܬଶ̅																																																																											ሺ37ሻ 
 
Then, the corresponding plastic flow direction (߲ܨ௣/߲ߪത௜௝) is obtained as: 
 

௣ܨ߲

ത௜௝ߪ߲
ൌ

ܵ௜̅௝

2ඥܬଶ̅
																																																																													ሺ38ሻ 

 
c) Incremental relationships between stress and strain in undamaged configuration 
 

Since in plastic condition state of stress in material should be on the yield surface ( ሶ݂ ൌ 0), 
the Kuhn Tucker plasticity consistency condition is expressed as follows [17]: 
 

݂ ൑ ሶ௣ߣ̅					,	0 ൒ ሶ௣݂ߣ̅					,	0 ൌ ሶ௣݂ሶߣ̅					,	0 ൌ 0																																																							ሺ39ሻ 

By taking time derivative of Eq. (35), consistency condition can be expressed as follows: 
 

݂ሶ ൌ
߲݂
ത௜௝ߪ߲

തሶ௜௝ߪ ൅
߲݂
௘̅௣ߝ߲

ሶ௘௣̅ߝ ൌ 0																																																															ሺ40ሻ 

 
Differentiating the yield function with respect to ߪ௜௝ and again with respect to ̅ߝሶ௘௣gives:  
 

߲݂
ത௜௝ߪ߲

ൌ

ܵ௜̅௝
ሺ1 െ ଵ̅ሻܫߙ

2ඥܬଶ̅
൅ ଶ̅ܬ௜௝ඥߜߙ

ሺ1 െ ଵ̅ሻଶܫߙ
																																																											ሺ41ሻ 

 
߲݂
௘̅௣ߝ߲

ൌ
߲݂
̅ܥ߲

̅ܥ߲

௘̅௣ߝ߲
ൌ െܿܤሺܳ െ  ሺ42ሻ																																																				ሻ̅ܥ

 
By rearranging Eq. (35) in general form, that is, 
 

݂൫ߪത௜௝, ൯̅ܥ ൌ ത௜௝൯ߪ൫ܨ െ	ܥሺ̅ఌത೐೛ሻ ൌ 0																																																						ሺ43ሻ 
 :ത௜௝൯ is defined asߪ൫ܨ

ത௜௝൯ߪ൫ܨ ൌ
ඥܬଶ̅

ሺ1 െ ଵ̅ሻܫߙ
																																																																	ሺ44ሻ 

 
Defining effective stress in undamaged configuration as equal to stress that material yields in uniaxial 

loading and substituting effective stress in undamaged configuration (ߪത௘) into Eq. (44), and solving it with 

respect to ߪത௘, leads us to: 
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ത௘ߪ ൌ
ඥ3ܬଶ̅

1 െ ଵ̅ܫߙ ൅ ଶ̅ܬඥ3ߙ
																																																																				ሺ45ሻ 

 
Equating effective plastic work per unit volume to plastic work per unit volume, regarding both in 
undamaged configuration leads us to [17]: 
 

௣ݓ݀ ൌ ሶߝ௘ߪ
௘௣
ൌ ሶߝത௜௝ߪ ௜௝

௣
																																																																		ሺ46ሻ 

 
Substituting Eqs. (36) and (45) into Eq. (46) leads us to the definition of the rate of the equivalent plastic 
strain: 
 

ሶߝ
௘௣
ൌ
1 െ ଵ̅ܫߙ ൅ ଶ̅ܬඥ3ߙ

ඥ3ܬଶ̅
ሶߣ
௣
௜௝ߪ

௣ܨ߲

௜௝ߪ߲
																																																				ሺ47ሻ 

 
Time derivative of Eq. (6) besides decomposing strain tensor into elastic and plastic parts results in:  
 

തሶ௜௝ߪ ൌ ߝത௜௝௞௟ܧ ̅ሶ௞௟
௘ ൌ ߝത௜௝௞௟൫ܧ ̅ሶ௞௟ െ ሶ௞௟̅ߝ

௣ ൯																																																					ሺ48ሻ 
 
Substituting Eqs. (41), (42), (47), and (48) into Eq. (40) gives us plasticity consistency condition: 
 

݂ሶ ൌ
߲݂
ത௜௝ߪ߲

ߝത௜௝௞௟ܧ ̅ሶ௞௟ െ ሶߣ
௣ ߲݂
ത௜௝ߪ߲

ത௜௝௞௟ܧ
௣ܨ߲

௞௟ߪ߲
൅ ሶߣ

௣ ߲݂
̅ܥ߲

̅ܥ߲

௘̅௣ߝ߲
1 െ ଵ̅ܫߙ ൅ ଶ̅ܬඥ3ߙ

ඥ3ܬଶ̅
௜௝ߪ

௣ܨ߲

௜௝ߪ߲
ൌ 0								ሺ49ሻ 

 
With regard to this equation, plastic multiplier in undamaged configuration (ߣሶ

௣
) is expressed as follows: 

 

ሶߣ
௣
ൌ
1

݄

߲݂
ത௜௝ߪ߲

ߝത௜௝௞௟ܧ ̅ሶ௞௟																																																																		ሺ50ሻ 

 

݄ ൌ
߲݂
ത௜௝ߪ߲

ത௜௝௞௟ܧ
௣ܨ߲

௞௟ߪ߲
൅
߲݂
̅ܥ߲

̅ܥ߲

௘̅௣ߝ߲
1 െ ଵ̅ܫߙ ൅ ଶ̅ܬඥ3ߙ

ඥ3ܬଶ̅
௜௝ߪ

௣ܨ߲

௜௝ߪ߲
																									ሺ51ሻ 

 
By substituting Eqs. (36) and (50) into Eq. (48), elastoplastic tangent operator is defined as follows: 
 

ഥ௜௝௞௟ܦ ൌ ത௜௝௞௟ܧ െ
1
ത݄ ܧ
ത௜௝௥௦

௣ܨ߲

ത௥௦ߪ߲

߲݂
ത௠௡ߪ߲

 ሺ52ሻ																																									ത௠௡௞௟ܧ

 
6. ELASTOPLASTIC MODEL IN DAMAGED CONFIGURATION 

 
In the previous section, elastoplastic model in undamaged configuration was presented. In this section, by 
using relationships between undamaged and damaged configurations, elastoplastic model in undamaged 
configuration is mapped to damaged configuration.  
 
a) Damage surface 
 

In this article, to obtain damage relationships, damage surface that was proposed by Chow and Wang 
[13] is adopted. This damage surface is expressed as follows: 
 

݃ ൌ ඨ
1
2 ௜ܻ௝ܮ௜௝௞௟ ௞ܻ௟ െ ሺܭ଴ ൅  ሺ53ሻ																																																						ሻܭ

 
where K0 is material constant that demonstrates damage onset. K is thermodynamic conjugate force of ߮௘௤ 
that was expressed through Eq. (34). Yij is conjugate damage force of ߮௜௝ that was expressed through Eq. 
 :is a fourth order symmetric tensor expressed as follows ݈݆݇݅ܮ .(30)
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௜௝௞௟ܮ ൌ
1
2
൫ߜ௜௞ߜ௝௟ ൅  ሺ54ሻ																																																																		௝௞൯ߜ௜௟ߜ

 
b) Anisotropic damage growth function 
 

Assuming conjugate damage  force of ߮௜௝, that is ௜ܻ௝, should be always on damage surface ሺ ሶ݃ ൌ 0ሻ; 
thus, damage consistency is expressed as follows [8, 18]:  
 

݃ ൑ ሶௗߣ					,	0 ൒ ሶௗ݃ߣ					,	0 ൌ 0																																																														ሺ55ሻ 
 
By time derivative of Eq. (53), consistency conditions for damage surface can be expressed as follows: 
 

ሶ݃ ൌ
߲݃
߲ ௠ܻ௡

ሶܻ௠௡ ൅
߲݃
ܭ߲

ܭ߲
߲߮௘௤

ሶ߮ ௘௤ ൌ 0																																																							ሺ56ሻ 
 
Differentiating damage surface with respect to Yij and again with respect to K gives us: 
 

߲݃
߲ ௜ܻ௝

ൌ
௜௝௞௟ܮ ௞ܻ௟

2ට
1
2 ௠ܻ௡ܮ௠௡௣௤ ௣ܻ௤

,
߲݃
ܭ߲

ൌ െ1																																						ሺ57ሻ, ሺ58ሻ 

 
The rate of the equivalent damage ( ሶ߮ ௘௤) is assumed as follows: 
 

ሶ߮ ௘௤ ൌ ට ሶ߮ ௜௝ ሶ߮ ௜௝																																																																						ሺ59ሻ 
 
Substituting Eqs. (22) and (57) into Eq. (59) gives us: 
 

ሶ߮ ௘௤ ൌ ඨ
௠௡௞௟ܮ ௞ܻ௟ܮ௠௡௣௤ ௣ܻ௤

2 ௔ܻ௕ܮ௔௕௖ௗ ௖ܻௗ
หߣሶௗห																																																				ሺ60ሻ 

 

Substituting Eqs. (57), (58) and (60) into Eq. (56), rearranging this equation in terms of ߣሶௗ, and 

considering the fact that the derivative of damage surface with respect to conjugate force of second order 

damage tensor ( డ௚

డ௒೘೙
) and damage loading factor ( ߣሶௗ) are always positive, gives us [21]: 

 

ሶௗߣ ൌ

߲݃
߲ ௠ܻ௡

ሶܻ௠௡

െ
߲݃
ܭ߲

ܭ߲
߲߮௘௤

ඨ
௜௝௞௟ܮ ௞ܻ௟ܮ௜௝௣௤ ௣ܻ௤
2 ௔ܻ௕ܮ௔௕௖ௗ ௖ܻௗ

																																																							ሺ61ሻ 

 
The time derivative of Yij gives us:  
 

ሶܻ௜௝ ൌ
߲ ௜ܻ௝

௞௟ߪ߲
ሶ௞௟ߪ ൅

߲ ௜ܻ௝

߲߮௞௟
ሶ߮ ௞௟																																																													ሺ62ሻ 

 
Substituting Eq. (62) into Eq. (61) and using Eq. (22) gives us:  
 

ሶ߮ ௥௦ ൌ  ሺ63ሻ																																																																									ሶ௞௟ߪ௥௦௞௟ܪ
 

௥௦௞௟ܪ ൌ ௥௦௜௝ܤ	
ିଵ  ሺ64ሻ																																																																				௜௝௞௟ܣ

 
where in these relationships: 
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௜௝௣௤ܤ ൌ ௤௝ߜ௣௜ߜ െ

߲݃
߲ ௥ܻ௦

߲ ௥ܻ௦
߲߮௣௤

߲݃
߲ ௜ܻ௝

߲݃
ܭ߲

ܭ߲
߲߮௘௤

ඨ
௠௡௞௟ܮ ௞ܻ௟ܮ௠௡௣௤ ௣ܻ௤
2 ௔ܻୠܮ௔௕௖ௗ ௖ܻௗ

																																													ሺ65ሻ 

 
And 
 

௜௝௞௟ܣ ൌ

߲݃
߲ ௥ܻ௦

߲ ௥ܻ௦
௞௟ߪ߲

߲݃
߲ ௜ܻ௝

߲݃
ܭ߲

ܭ߲
߲߮௘௤

ඨ
௠௡௞௟ܮ ௞ܻ௟ܮ௠௡௣௤ ௣ܻ௤
2 ௔ܻ௕ܮ௔௕௖ௗ ௖ܻௗ

																																																							ሺ66ሻ 

 
These equations demonstrate the relationships between rates of second order damage	ሺ ሶ߮ ௜௝ሻ and rate of 
stress tensor (ߪሶ௜௝), that are modified in this article. By time derivative of Eq. (7) rate of stress tensor in 
damaged configuration can be expressed as:  
 

ሶ௜௝ߪ ൌ 		 ሶ௞௟ߝ௜௝௞௟ܧ
௘ ൅ ௞௟ߝሶ௜௝௞௟ܧ

௘ 																																																											ሺ67ሻ 
 
By considering Eq. (8), ݈݆݇݅ܧ tensor is a function of ߮௜௝, so: 
 

ሶ௜௝௞௟ܧ ൌ
௜௝௞௟ܧ߲
߲߮௠௡

ሶ߮௠௡ ൌ ௜௝௣௤ܯ	2
ିଵ ത௣௤௥௦ܧ

௞௟௥௦ܯ߲

߲߮௠௡
ሶ߮௠௡																																								ሺ68ሻ 

 
Substituting Eqs. (63) and (68) into Eq. (67) gives us the rate of elastic strain tensor in damaged 
configuration: 
 

ሶ௜௝ߝ
௘ ൌ ௜௝௞௟ܧ

ିଵ
௞ܲ௟௠௡ߪሶ௠௡																																																																	ሺ69ሻ 

where: 

௜ܲ௝௞௟ ൌ ௝௟ߜ௜௞ߜ െ
௜௝௠௡ܧ߲

߲߮௥௦
௠௡௘ߝ௥௦௞௟ܪ 																																																							ሺ70ሻ 

 
Fourth order damage tensor (ܯ௜௝௞௟) is dependent on second order damage tensor, so the derivative of fourth 
order damage tensor is expressed as: 
 

ሶܯ ௜௝௞௟ ൌ
௜௝௞௟ܯ߲

߲߮௠௡
ሶ߮௠௡																																																																				ሺ71ሻ 

 
The derivative of Eq. (1) gives: 

തሶ௜௝ߪ ൌ ሶ௞௟ߪ௜௝௞௟ܯ ൅ ሶܯ ௜௝௞௟ߪ௞௟																																																																ሺ72ሻ 
 
Afterward, by substituting Eqs. (63) and (71) into Eq. (72) and rearranging, it gives: 
 

തሶ௜௝ߪ ൌ ܴ௜௝௞௟ߪሶ௞௟																																																																												ሺ73ሻ 
 
where: 

ܴ௜௝௞௟ ൌ ௜௝௞௟ܯ ൅
௜௝௣௤ܯ߲

߲߮௥௦
 ሺ74ሻ																																																							௣௤ߪ௥௦௞௟ܪ

 
Equation (73) demonstrates the relationship between rate of stress tensor in damaged and undamaged 
configurations. 

Therefore, the rate of stress tensor in damaged configuration is expressed as: 
 

ሶ௜௝ߪ ൌ ܴ௜௝௞௟
ିଵ  ሺ75ሻ																																																																												തሶ௞௟ߪ
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c) Yield surface and plastic potential function in damaged configuration 
 
        Plastic yield surface and plastic potential function used so far are in undamaged configuration. In this 
section, plastic yield surface and plastic potential function are mapped to damaged configuration. 
        By substituting Eq. (1) into Eq. (35), yield surface in damaged configuration is expressed as: 
 

݂ ൌ
ܿଵ
ܿଶ
െ ̅ܥ 	ൌ 0																																																																										ሺ76ሻ 

where: 

ܿଵ ൌ ඨ
1
2
ܳ௜௝௞௟ߪ௞௟ܳ௜௝௠௡ߪ௠௡																																																							ሺ77ሻ 

 
ܿଶ ൌ 1 െ  ሺ78ሻ																																																																					௜௝ߪ௞௞௜௝ܯߙ

 

ܳ௜௝௠௡ ൌ ቆܯ௜௝௠௡ െ
௜௝ߜ௞௞௠௡ܯ

3
ቇ																																																					 ሺ79ሻ 

 
Derivate plastic yield surface (݂) with respect to stress tensor gives us: 
 

߲݂
௜௝ߪ߲

ൌ
ܳ௠௡௜௝ܳ௠௡௞௟ߪ௞௟

2ܿଵܿଶ
൅	
௠௠௜௝ܿଵܯߙ

ܿଶ
ଶ 																																											ሺ80ሻ 

 
By substituting Eq. (1) into Eq. (37) and deriving with respect to stress tensor, ߲ܨ௣/߲ߪ௜௝ can be 

expressed as: 
 

௣ܨ߲

௜௝ߪ߲
ൌ
ܳ௠௡௜௝ܳ௠௡௞௟ߪ௞௟

2ܿଵ
																																																													ሺ81ሻ 

 
Moreover, the rate of plastic strain in damaged configuration is expressed as follows: 
 

ሶ௜௝ߝ
௣ ൌ ሶ௣ߣ

௣ܨ߲

௜௝ߪ߲
																																																																									ሺ82ሻ 

 
Mapping consistency condition in undamaged configuration (Eqs. 50 and 51) to damaged one, gives: 
 

ሶ௣ߣ ൌ
1
݄
߲݂
௜௝ߪ߲

 ሺ83ሻ																																																																				ሶ௞௟ߝ௜௝௞௟ܧ

 

݄ ൌ
߲݂
௜௝ߪ߲

௜௝௞௟ܧ
௣ܨ߲

௞௟ߪ߲
െ
߲݂
ܥ߲

ܥ߲
௘௣ߝ߲

1 െ ଵܫߙ ൅ ଶܬඥ3ߙ
ඥ3ܬଶ

௜௝ߪ
௣ܨ߲

௜௝ߪ߲
																													ሺ84ሻ 

 
where, based on experimental examples, ߲݂/߲ߝ௘௣ is defined as follows [21]: 
 

߲݂
௘௣ߝ߲

ൌ
1

൫1 െ ߮௘௤൯
																																																															 ሺ85ሻ 

 
By using Eq. (73) and Eq. (52) the relationship between rate of stress in damaged configuration and rate of 
strain in undamaged configuration is expressed as follows: 
 

ሶ௜௝ߪ ൌ ௜௝௠௡ܥ
௘௣ௗ  ሺ86ሻ																																																																			ሶ௠௡̅ߝ

 
௜௝௠௡ܥ
௘௣ௗ ൌ ܴ௜௝௞௟

ିଵ  ሺ87ሻ																																																													ഥ௞௟௠௡ܦ
 
All the parameters in Eq. (87) were previously defined. 
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        The damage elastoplastic tangent operator (ܥ௜௝௠௡
௘௣ௗ ) is used in finite element code in order to obtain a 

new stress or strain increment, using Newton Raphson iterations method. 
 

7. SIMULATION AND VALIDATION 
 
In order to verify the applicability and effectiveness of the proposed model, two nonlinear examples are 
considered. Results obtained by the proposed model are compared with analogous experimental results 
and classical plasticity to comprehend its performance. The performance of anisotropic damage model, 
presented in previous sections, is basically assessed in the simulation of the existing tensile tests of 
aluminum and graphite cast iron. Numerical tests were conducted by means of displacement control to 
apply the loads in order to predict hardening and softening in specimens. 

In finite element implementation, modified forward Euler integration with error control is used. 
Forward Euler - explicit - method is appropriate for complex constitutive equations in damage mechanics 
that need high computational efforts. Forward Euler method is faster than backward Euler – implicit - 
method. Although conditional stability is the main drawback of explicit method, it can be avoided by 
selecting suitable time increment steps. 
 
a) Tensile aluminum alloy plate 
 

The tested specimen was a 3.19mm aluminum alloy plate. Fig. 1 shows the geometry of the tensile 
specimen with 20mm notch radius, tested in a driven machine INSTRON3369 by Brunig et al. [22]. 
 

 

 

 

 

Fig. 1. Tensile aluminum specimen 
 

Material parameters like E, υ and σ୷ in both tests are cited from the literature. Using inverse 
identification procedure, the remaining parameters are obtained. Consequently, using equivalent stress - 
equivalent plastic strain curves, the first estimates of the material parameters in Eq. (35) are obtained. 
Subsequently, using inverse identification procedure, finite element simulations of the smooth tension 
tests have been performed, which lead to the final material parameters. 

The material parameters in the simulation are presented in Table 1. These parameters are adapted 
from Brunig et al. [22]. 
 

Table 1. Material parameters considered in the simulation of tensile aluminum alloy plate 
 

Property Value 

Initial Young’s modulus, ܧത (GPa) 65 

Poisson’s ratio,߭ 0.3 

Initial yield strength, ߪ௬ (MPa) 340 

Initial isotropic hardening, ܥ௜̅௡௜௧௜௔௟ (MPa) 189.7 

Material constant in yield surface, ߙ (MPa-1) 5e-5 

Initial damage surface, K଴ (MPa) 1 

Material constant in damage part of Helmholtz free energy function,Kୢ (MPa) 24 

Material constant in plastic part of Helmholtz free energy function, Q  (MPa) 350 

Material constant in plastic part of Helmholtz free energy function, Bc  (MPa) 24 
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Moreover, Fig. 11 shows the thickness change (lateral displacement) versus axial strain for tensile graphite 
cast iron in critical point. 
 

 

Fig. 11. Thickness change (lateral displacement) versus axial strain for  
graphite cast iron under uniaxial tension 

 
8. CONCLUSION 

 
In this work, using thermodynamics framework, an anisotropic damage model for iron-based materials is 
proposed. Damage in metals is described and explained by using: damage tensor for mapping the stresses 
from the undamaged to the damaged configurations, damage hardening rules (describing damage 
evolution), and damage conjugate forces (using energy equivalence hypothesis). 
        Using anisotropic damage, the damage is expressed through a damage mechanics framework to 
determine the stiffness degradation. In deriving the constitutive model, a yield surface combined with non-
associated flow rule is utilized to determine the onset and evolution of plastic strain and a damaged 
surface with associated flow rule is utilized to determine the onset and evolution of damage. Therefore, 
this model has the ability to demonstrate growth of anisotropic damage besides plastic deformations in 
iron based materials. 
        Numerical simulations of some existing experiments, including tensile tests on specimens of 
aluminum alloy plate and graphite cast iron have been performed, and the corresponding numerical results 
are validated with the experimental measurements. 
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