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Abstract— In this article, a model of anisotropic damage coupled to plasticity based on
thermodynamics framework is proposed. This model is introduced to describe the plastic and
damage behavior of metals adequately. According to the elastic energy equivalence hypothesis
between the undamaged material and the damaged material, the constitutive equations for the
material in damaged configuration are written. The damaged material is modeled using the
constitutive laws of the undamaged material in which the stresses in undamaged configuration are
mapped by the stresses in damaged configuration. The damage is proposed through a damage
mechanics framework, and the material degradation is determined by utilizing an anisotropic
damage measure. In developing constitutive model, a plastic yield surface is used to demonstrate
the onset of plasticity, and a damage surface is used to demonstrate the onset of damage.

The plastic relationships have been written in undamaged configuration, and by using
relationships between damaged and undamaged configurations, plastic equations are extended to
damaged configuration.

Numerical simulations of the elastoplastic deformation behavior of hydrostatic stress
sensitive metals demonstrate the efficiency of the formulation, and also show the physical effects
of parameters of the model. In order to achieve an equilibrated global solution, a nonlinear finite
element program that employs a Newton Raphson iteration procedure is applied. Finally, the
numerical results of some examples are validated with the existing experimental measurements.

Keywords— Anisotropic damage, thermodynamics framework, damage configuration

1. INTRODUCTION

Inelastic deformations in polycrystalline metals are accompanied by internal damage that is dependent on
the growth of microdefects - microvoids, microcracks - in material [1-2]. Theses damage processes begin
in some states of deformation, and its evolution depends mainly on the state of stress and strain.

Growth of microdefects will influence the elastic and plastic properties of the material; and this
change of material characteristics such as elasticity modulus was not considered in classical plasticity
theory. However, by using damage models, this modification can be considered. Anisotropic damage
models require using continuous mechanics besides thermodynamics framework and kinematic variables.
Combinations of plasticity and damage are usually based on isotropic hardening combined with one of the
damage variables - isotropic, vectorial, or anisotropic damage. Based on effective strain in damaged
materials, Kachanov [3] proposed primary concept of continuum damage mechanics; thus, researchers
have chosen isotropic damage due to its simplicity and efficiency [3-5], axial vector representation of

damage variables [6], and second order damage tensor [7-9].
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Damage and plastic deformation in materials have interaction with each other, which should be
considered in modeling. In this paper, two surfaces including damage and plastic surfaces with a non-
associated flow rule for plastic surface and an associated flow rule for damage surface are adopted.

2. ANISOTROPIC DAMAGE MODEL

Anisotropic damage can be used to model specific void and crack surfaces, specific crack and void
volumes, or the spacing between cracks or voids. Increase in stress and deformation in metals leads to
growth in microdefects that influences the elastic and plastic properties of the material. In this research,
the plasticity theory has been applied to create consistency equations in undamaged configuration. These
equations are extended to damage configuration by using relationships between undamaged and damaged
configurations that Cordebois and Sidoroff [10] originally proposed.

In this model, two different types of configurations are utilized, including undamaged configurations
and damaged ones. The former one is designated by superimposed dash, and the latter is designated
without superimposed dash. Generally, the relationship between undamaged and damaged configuration in
material is presented as follows [10-11]:

0ij = Mijri01 €Y)

where gy, is stress tensor in damaged configuration, d;; is stress tensor in undamaged configuration, and
Mjji 1s fourth order damage effect tensor. In the present work, it is preferable to utilize fourth order
damage effect tensor presented by Cordebois and Sidoroff [10]:

1
Miji, = §(5ikaj + wi k) (2)

wij = (85 —@i)~! 3)

where J; is the Kronecker delta, and ¢;; is second order damage tensor. For a general case of anisotropic
damage, the second order damage tensor can be written in terms of damage densities [12]:

P11 P12 P13
@ = (P21 P22 P23|=|,/dyd;y d, Vdyds (4)
P31 P32 P33

Where d; is microcracks density in i direction, and is described by the ratio of microcracks total area
to surface total area whose unit normal is n;.

The concept of elastic strain energy equivalence in undamaged and damaged configurations, firstly
proposed by Chow and Wang [13], was applied to get stiffness tensor in damaged configurations:

1 1_

2 0ijei = 5 0ij&j (5)
With respect to generalized Hooke's law, the relation between stress and strain of isotropic material in
elastic part for both configurations is expressed as follows:

0ij = Eijuéh (6)
0ij = Eijric 7

By substituting Eqgs. (6) and (7) into Eq. (5), stiffness tensor in damaged configuration is obtained:
Eijit = MimnEmnpgMpar 38)
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By substituting Eqs. (6) and (7) into Eq. (1) and replacing Ejj), from Eq. (8), the expression between
elastic strain tensors in undamaged and damaged configurations can be obtained as follows:

€ =T .e

&ij = Mijii€ 9
where elastic strain tensor in damaged configurations (sfj) is the reversible part of strain in damaged
configuration.

3. FRAMEWORK OF IRREVERSIBLE PROCESS

For the formulation of the constitutive and evolution equations of elastic, plastic and damage in materials,
irreversible thermodynamics theory has been employed as a rational framework [14, 6].

In this research, thermodynamics operator based on the free potential proposed by Helmholtz is
applied. These operators are presented in constant temperature. Clausius—Duhem inequality in isothermal
condition can be written as follows [14]:

This inequality implies internal entropy production in an irreversible process, where § is Helmholtz free
energy function that can be explained in terms of suitable internal state variables. In this work v is
assumed to be a function of elastic strain tensor, equivalent plastic strain, second order damage tensor, and
equivalent damage variable:

1:[) = Ip(giej'gepl(pijr(peq) (11)

In this equation, elastic strain tensor (siej) characterizes the behavior of elastic strain that represents
reversible part of deformations. Equivalent plastic strain (€°P) characterizes the plasticity isotropic
hardening accumulated strain that represents irreversible part of deformations without taking into account
generation and propagation of microdefects. Second order damage tensor (¢;;) characterizes anisotropic
damage in material that represents generation and propagation of microdefects. Equivalent (accumulated)
damage variable (¢®©?) characterizes accumulated isotropic damage hardening that represents accumulated
microdefects in material.

By taking time derivative of Eq. (11), substituting it into Eq. (10), and separating its reversible and
irreversible parts, its reversible part can be obtained as follows:

oy
oij = Pgiej (12)

where p implies mass density; also, irreversible part leads to representing thermodynamic conjugate forces
(Y;; K ,C) that are respectively dependent on internal state variables (¢;;, 7, %) [15]:
o o )

Yiy=-» 09’ K=r dped’ c=»r ogep (13). (14), (15)

By defining mechanical flux vector (J), vector of conjugate forces (X) is expressed as follows:

. T
J = p{el, oy, &, — ) (16)
X={Uij,Yij,é,k} (17)

Rate of entropy production can be expressed as the scalar product of X and J as follows:
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0,6 —pP=X.]=0 (18)

However, if a component of J (J;) is assumed to be only a function of the corresponding thermodynamic
force of X (X},), the existence of dissipation potential functions can be proved [16].

FP = FP(0y,C, €, £°P) (19)
g = g( L]'K:(pij'(peq) (20)
where FPand g are plastic and damage potential function, thus, J, can be expressed as follows [16]:
. QFP . ag dFP ag
P p.. =4 ger — Jp___ ped = jd
& A 00‘1-}-'('01} A ayij, 2 3C ,Q A 3K (21),(22),(23), (24)

where AP and A%are the plastic and damage loading factors that are known as the Lagrangian plasticity and
damage multipliers, and can be obtained by plastic and damage consistency condition.

4. HELMHOLTZ FREE ENERGY FUNCTION

Helmholtz free energy function (y) is a portion of internal energy that is available for doing work at
constant temperature. This function can be expressed as follows [14]:

Y=u-—sb (25)

where u determines the specific internal energy, s is entropy and 8 is the temperature. As it was mentioned
in previous sections, increase in stress and deformation in material leads to growth of damage that
influences the elastic and plastic properties of the material. Therefore, elastic strain energy of material is
dependent on elastic strain and material damage [2].

In this research, Helmholtz free energy function has been assumed in three parts, including elastic,
plastic, and damage. As it has been mentioned, elastic part is a function of elastic strain tensor (ef;) and
second order damage tensor (¢;;). Plastic and damage parts have been respectively assumed as functions
of equivalent plastic strain (&°7) and equivalent damage variable (p°?) [12, 17]:

o €r.e &€ d e
P(5, &7, 0y, 0°0) = p¥ (e, 0i) + py’ (E) + py (%) (26)
a) Elastic part of Helmholtz free energy function:

To express elastic part of Helmholtz free energy function, elastic energy equality law proposed
by Cordebois and Sidoroff [10] and expanded by Voyiadjis etal. [12] is used.

plp (‘gl]r (pl]) UL] l]klo-kl (27)
By using Egs. (13) and (8), thermodynamic conjugate force of second order damage tensor (¢;;), that is

Y;;, is expressed as follows:

d 1 O0E;;:
v =——0“—]klakz (28)

Solving Eq. (28) leads to the definition of Y,,:

1 (oM OMy g1
Yrs = —50jj — Ermlqququl + MumnErmlipq - Okt (29)
2 0Qys dp

Moreover, with respect to M, which is a symmetric tensor, Y;.;can be written as:
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oM; jmn =_
Yis = _UijﬁEm}lququlUkl (30)

b) Plastic part of Helmholtz free energy function:

The plastic part of Helmholtz free energy function expresses increase of free energy that is dependent
on isotropic hardening in plastic deformation. For polycrystalline metals, plastic part of Helmholtz free
energy function can be written as [18]:

1 _
—BcE®fP
31
Bc € ) (D

o) = 0 (£ +
where Q and Bc are material constants.
Substituting Eq. (15) into Eq. (31), thermodynamic conjugate force of £%°, which is C, can be
obtained as follows:

.
C=Poew =

Q(1 —e7P=) (32)
c) Damaged part of Helmholtz free energy function

The damaged part of Helmholtz free energy function is assumed to be a linear relationship between
equivalent damage variable (¢°7?) and its thermodynamic conjugate force (K):

dc.,eq =l eq\2
p () 2Kd(<o ) (33)

By substituting Eq. (14) into Eq. (33), thermodynamic conjugate force of equivalent damage variable
(p°?), which is K, can be obtained as follows:

K= ov = K,p®1 34
=P gpea = Kao (34)

5. ELASTOPLASTIC MODEL

Plasticity theory is used to express the behavior of various solids. In plasticity theory, a yield criterion is
an assumption about determining the onset of the plastic deformation in material, and consistency
condition imposes a restriction on the relationship between the stress and plastic strain tensor.

a) Plastic yield surface:

Spitzig et al. [19] carried out experimental studies on the effect of superimposed hydrostatic stress on
the deformation behavior of metals, and Spitzig and Richmond [20] have shown that the flow stress
depends approximately linearly on hydrostatic stress state. In this work, the model of Spitzig et al. [19] is
extended to anisotropic damage by using two loading surfaces: one for plasticity and another for damage.
Hence, the plastic yield condition of the iron base materials is as follows:

f(3;;,6%) = |, — (1 —al)Czery =0 (35)

where J, = §;;5;;/2 is second invariant of the deviatoric stress tensor. 3;; = &;; — G, 6;;/3 is deviatoric
- — . . . - t - . .
stress tensor. I; = g; is first invariant of the stress tensor. £°P = fo &°Pdt is equivalent (accumulated)

plastic strain. « is material constant, and C is expressed by Eq. (32) in terms of £¢P.
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b) Non-associated flow rule

Incremental plastic strain vector in the strain space is normal to plastic potential function (F?).

o= p (36)

Thus, the plastic potential function (F?) is also formulated in terms of the stress tensor in undamaged
configuration. In damaged metals, irreversible volumetric strains are mainly caused by damage, and
volumetric plastic strains are negligible in comparison [19]. Thus, the plastic potential function is

FP = \ﬁ (37)

Then, the corresponding plastic flow direction (0F?/d4;;) is obtained as:

expressed as follows:

oFP 5
—=—= (38)
aO'ij 2 ]2
¢) Incremental relationships between stress and strain in undamaged configuration
Since in plastic condition state of stress in material should be on the yield surface (f = 0),
the Kuhn Tucker plasticity consistency condition is expressed as follows [17]:
f<0, >0, Pf=0, Pf=0 (39)
By taking time derivative of Eq. (35), consistency condition can be expressed as follows:
G f af ze
0, P=0 40
f aO_U L_] + a —ep ( )
Differentiating the yield function with respect to g;; and again with respect to %P gives:
5 —al
Sij ( 1) + (X5U\/]_2
of _ 2\/_ (41)
05, (1 - al)?
of 9f aC _
=— = —B -C 42
ozer ~gc oz~ 0@ 0) “2)
By rearranging Eq. (35) in general form, that is,
f(&l],C_') = F(El]) - C(Eep) == 0 (43)
F(5;;) is defined as:
_ VI
F(g::) = - 44
(0-1]) (1 _ 0{11) ( )

Defining effective stress in undamaged configuration as equal to stress that material yields in uniaxial
loading and substituting effective stress in undamaged configuration (5¢) into Eq. (44), and solving it with

respect to ¢, leads us to:
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. 3]

0° = — — (45)
1—al; +ay3),
Equating effective plastic work per unit volume to plastic work per unit volume, regarding both in
undamaged configuration leads us to [17]:
dw, =5°¢ | = 5,5, (46)

Substituting Egs. (36) and (45) into Eq. (46) leads us to the definition of the rate of the equivalent plastic
strain:

: 1—al, + a\/3J,=P_ OFP
£ = 1t 3 gps OF (47)
NEY doy;
Time derivative of Eq. (6) besides decomposing strain tensor into elastic and plastic parts results in:
ij = Eijaéiy = Eijra (G — 5) (48)
Substituting Eqs. (41), (42), (47), and (48) into Eq. (40) gives us plasticity consistency condition:
. of - . =p 9f _ OIFP -pdf 0C 1—al, +a/3],_ OFP
=—Finméx — A =—Eijxn— == iiz—=—=20 49
f GEU Uklekl E)EU ikl aO'kl + aoc ager 3]_2 O-U aO'ij ( )

-Dp
With regard to this equation, plastic multiplier in undamaged configuration (1 ) is expressed as follows:

=D 1 af — .
A = ﬁﬁEulekl (50)
— 9df _ OFP Of 9C 1—al; +ay/3J; oF?
h: f Eijkl — +—f; — 1 — IZEU’ — (51)
aO'ij aO’kl ac ogep /3]2 aO'ij
By substituting Egs. (36) and (50) into Eq. (48), elastoplastic tangent operator is defined as follows:
- _ 1_ O0FF of _
Diji = E =E —fE (52)

ijkl — A ijrsﬁaamn mnkl
6. ELASTOPLASTIC MODEL IN DAMAGED CONFIGURATION

In the previous section, elastoplastic model in undamaged configuration was presented. In this section, by
using relationships between undamaged and damaged configurations, elastoplastic model in undamaged
configuration is mapped to damaged configuration.

a) Damage surface

In this article, to obtain damage relationships, damage surface that was proposed by Chow and Wang
[13] is adopted. This damage surface is expressed as follows:

1
g= ’Eyijl'ijklykl — (Ko + K) (53)

where K is material constant that demonstrates damage onset. K is thermodynamic conjugate force of ¢©?
that was expressed through Eq. (34). ¥ is conjugate damage force of ¢;; that was expressed through Eq.
(30). Ly, is a fourth order symmetric tensor expressed as follows:
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1
Lijig = > (881 + 6:16;x.) (54)
b) Anisotropic damage growth function

Assuming conjugate damage force of ¢;;, that is Y;;,

thus, damage consistency is expressed as follows [8, 18]:

should be always on damagesurface (g = 0);

g<0, At>0, Ag=0 (55)

By time derivative of Eq. (53), consistency conditions for damage surface can be expressed as follows:

. Og v +8g 0K
9= 5y, '™ T K gpea

P11 =0 (56)
Differentiating damage surface with respect to ¥;; and again with respect to K gives us:
dg LijiYia 99 _

Yy 9K
2 |5 YonLmnpaYpq

~1 (57), (58)

The rate of the equivalent damage (¢,4) is assumed as follows:

¢l = ’(pij(pij (59)

Substituting Egs. (22) and (57) into Eq. (59) gives us:

([)eq — Lmnlelemnqupq |ﬂ.d| (60)
2YotbLotbchcd

Substituting Eqgs. (57), (58) and (60) into Eq. (56), rearranging this equation in terms of A%, and
considering the fact that the derivative of damage surface with respect to conjugate force of second order

damage tensor (%) and damage loading factor ( A%) are always positive, gives us [21]:

dg .
. aY Ymn
jd = mn (61)
09 0K [LijiaYiiLijpqYpq
oK aq)eq 2YabLabchcd
The time derivative of Yj; gives us:
aYy; aY;
= el + ) 62
U= G0, Oki P Pri (62)
Substituting Eq. (62) into Eq. (61) and using Eq. (22) gives us:
Ors = HyskiOki (63)
Hysii = BrsijAiji (64)

where in these relationships:
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ag aYrs 69
Y,
84 (65)

\/ mnlelemnqupq

B =4

pl

ijpq

_9
oK 0 2YabLabcd ch

And

dg dY.s dg
aYrS aUkl OY

Al]kl
a_g JdK Lmnlelemnqupq
oK a(peq ZYabLabchcd

(66)

These equations demonstrate the relationships between rates of second order damage (¢;;) and rate of
stress tensor (d;;), that are modified in this article. By time derivative of Eq. (7) rate of stress tensor in
damaged configuration can be expressed as:

6ij = Eijéa + Eijuti (67)
By considering Eq. (8), E;;, tensor is a function of ¢;;, so
0Eji

= aIVIklrs
— = G =2 ML E '
OPmn

ijpqtpqrs m Pmn (68)

Eiji =

Substituting Egs. (63) and (68) into Eq. (67) gives us the rate of elastic strain tensor in damaged

configuration:
éiej = Ei}lilpklmno'-mn (69)
where:
0E;;
Pijig = 6ix6j1 — %Hrsklsfnn (70)
s

Fourth order damage tensor (M) is dependent on second order damage tensor, so the derivative of fourth
order damage tensor is expressed as:
. oM;;
jkl .
Miji = B Pmm (71)

mn

The derivative of Eq. (1) gives:
0ij = MijiaGia + Mijia0ia (72)

Afterward, by substituting Egs. (63) and (71) into Eq. (72) and rearranging, it gives:

0ij = RijkiO (73)
where:
OMijpq
Rijii = Myjig + 5 Hys110pq (74)
Drs

Equation (73) demonstrates the relationship between rate of stress tensor in damaged and undamaged
configurations.
Therefore, the rate of stress tensor in damaged configuration is expressed as:

Gij = Riju0n (75)
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¢) Yield surface and plastic potential function in damaged configuration

Plastic yield surface and plastic potential function used so far are in undamaged configuration. In this
section, plastic yield surface and plastic potential function are mapped to damaged configuration.
By substituting Eq. (1) into Eq. (35), yield surface in damaged configuration is expressed as:

-
f=—-C =0 (76)

)

where:
1
€ = EQijklO-leijmno-mn (77)
Cy = 1- aMkkijo-ij (78)
Mkk O

Qijmn = <Mijmn - %) (79)

Derivate plastic yield surface (f) with respect to stress tensor gives us:

af _ anij anklakl aMmmij G (80)
aO'ij 2C1C2 C22

By substituting Eq. (1) into Eq. (37) and deriving with respect to stress tensor, dFP /do;; can be
expressed as:

aF? _ aniijnklakl

81
aO'ij 2C1 ( )
Moreover, the rate of plastic strain in damaged configuration is expressed as follows:
. JFP
o= jp 82
=g (82)
Mapping consistency condition in undamaged configuration (Egs. 50 and 51) to damaged one, gives:
. 1 of .
AP = EEEijklgkl (83)
d 0FP 0f 0C 1—al; +ay3 JOFP
h = ! ijkl _I : /2 0ij (84)
aO'L'j aO'kl ac oeep 3]2 aO'L'j
where, based on experimental examples, df /&P is defined as follows [21]:
d 1
d (85)

0e® (1 — goq)

By using Eq. (73) and Eq. (52) the relationship between rate of stress in damaged configuration and rate of
strain in undamaged configuration is expressed as follows:

. d =
Oij = Ciej;;nngmn (86)
d _ p—
Ciejlr)nn = RijiDictmn (87)

All the parameters in Eq. (87) were previously defined.
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epd
ijmn
new stress or strain increment, using Newton Raphson iterations method.

The damage elastoplastic tangent operator (C is used in finite element code in order to obtain a

7. SIMULATION AND VALIDATION

In order to verify the applicability and effectiveness of the proposed model, two nonlinear examples are
considered. Results obtained by the proposed model are compared with analogous experimental results
and classical plasticity to comprehend its performance. The performance of anisotropic damage model,
presented in previous sections, is basically assessed in the simulation of the existing tensile tests of
aluminum and graphite cast iron. Numerical tests were conducted by means of displacement control to
apply the loads in order to predict hardening and softening in specimens.

In finite element implementation, modified forward Euler integration with error control is used.
Forward Euler - explicit - method is appropriate for complex constitutive equations in damage mechanics
that need high computational efforts. Forward Euler method is faster than backward Euler — implicit -
method. Although conditional stability is the main drawback of explicit method, it can be avoided by
selecting suitable time increment steps.

a) Tensile aluminum alloy plate

The tested specimen was a 3.19™ aluminum alloy plate. Fig. 1 shows the geometry of the tensile
specimen with 20™" notch radius, tested in a driven machine INSTRON3369 by Brunig et al. [22].

176mm

A\ 4

S0mm

smm  110mm ;ZOmm

Fig. 1. Tensile aluminum specimen

Material parameters like E, v and oy, in both tests are cited from the literature. Using inverse
identification procedure, the remaining parameters are obtained. Consequently, using equivalent stress -
equivalent plastic strain curves, the first estimates of the material parameters in Eq. (35) are obtained.
Subsequently, using inverse identification procedure, finite element simulations of the smooth tension
tests have been performed, which lead to the final material parameters.

The material parameters in the simulation are presented in Table 1. These parameters are adapted
from Brunig et al. [22].

Table 1. Material parameters considered in the simulation of tensile aluminum alloy plate

Property Value
Initial Young’s modulus, E (GPa) 65
Poisson’s ratio,v 0.3
Initial yield strength, o;, (MPa) 340
Initial isotropic hardening, Cipiziq; (MPa) 189.7
Material constant in yield surface, & (MPa™) 5e-5
Initial damage surface, K, (MPa) 1

Material constant in damage part of Helmholtz free energy function,Kq (MPa) 24
Material constant in plastic part of Helmholtz free energy function, Q (MPa) 350
Material constant in plastic part of Helmholtz free energy function, Bc (MPa) 24
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Due to the symmetric condition of specimen, only a quarter of specimen is simulated in
numerical model. In order to describe the large stress and deformation gradients anticipated in the
necking zone shown in Fig. 2, a spatially non-uniform finite element mesh, composed of 640 higher
order (27 nodes) 3D isoperimetric elements has been chosen.

——

Y

Fig. 2. Finite element mesh of the tensile aluminum specimen

The evolution of the equivalent damage variable field obtained in the finite element analysis is
illustrated in the contour plots in Fig. 3a-d. It can be seen that during the early stages of the loading
process, maximum damage is detected near the edge of the notch. As the specimen is pulled slowly,
the maximum damage zone moves gradually towards the centre of the specimen, and localizes there.
At the final stage, damage is highly localized around the centre.

| T
58§

BEEE-az=z=

(a) at u/l=1.25% (b) at u/1=1.38% (c) at u/1=2.11%

(d) at the end of loading
Fig. 3. Damage contour plots in tensile aluminum specimen

In Fig. 4, contour distribution of stress in the longitudinal of specimen is illustrated at the end of the
loading.
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Fig. 4. Longitudinal stress of the tensile aluminum specimen (MPa)

Furthermore, good correlation in load displacement curves between experimental result and
numerical simulation can be observed in Fig. 5. In addition, the results obtained from the presented
constitutive model are compared with the results from Abaqus software with classical plasticity (Von-
Mises) without considering damage, due to the investigative effect of damage on the specimen. In Fig. 5,
it is clear that ignoring damage in classical plasticity has a significant effect on the accuracy of the results,
and anisotropic damage has the ability to predicate more realistic behavior of the specimen.

8

7 Tese® PR e XX LLLALLLLLLLLLLL LA i

6 et Proposed

. J// Model
= 4 Experiment
z ‘T
= 0 t] ........ Von-Mises

: f Plasticity

0 ' ' :

0 2 3
u/10 %

Fig. 5. Axial load (P)-displacement (u) normalized by specimen length curve of the tensile aluminum specimen

Moreover, Fig. 6 shows the thickness change (lateral displacement) versus axial displacement for
tensile aluminum alloy plate in critical point. Thickness change is negligible due to small deformation
theorem, but damage plasticity model has high ability to demonstrate realistic load displacement curves as
shown in Fig. 5.

99 \

. \

S 98

S~

g \

97 \

96 T T T
3

2
u/10 %

Fig. 6. Thickness change (lateral displacement) versus axial displacement for tensile aluminum specimen
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b) Tensile graphite cast iron

Tensile test was performed for the tubular specimen of spheroidized graphite cast iron, and its
geometry is shown in Fig. 7. This specimen was tested by Hayakawa et al. [18].
Material parameters are presented in Table 2. These parameters were adapted from Hayakawa et

al. [18].

=
I
B
B
-
17mm
15 mm

30mm
T
]
1
|
1
]
]
]
]
1
1
1
]
]
]
]
1
:
1
1
1
i
@

) . . 160mm . -
Fig. 7. Tensile graphite cast iron

Table 2. Material parameters considered in the simulation of tensile graphite cast iron

Property Value
Initial Young’s modulus, E (GPa) 169
Poisson’s ratio, v 0.285
Initial yield strength, oy, (MPa) 300
Initial isotropic hardening, Cipjtial (MPa) 174.2
Material constant in yield surface, o (MPa™) 1.87e-6
0.22

Initial damage surface, K (MPa)
Material constant in damaged part of Helmholtz free energy function,K4 (MPa) 15.5
Material constant in plastic part of Helmholtz free energy function, Q (MPa) 315
Material constant in plastic part of Helmholtz free energy function, Bc (MPa) 14.2

Due to the symmetric condition of specimen, one eighth of specimen in numerical simulation is
used. A spatially non-uniform finite element mesh, composed of 1040 higher order (27 nodes) 3D
isoperimetric elements, has been chosen and is shown in Fig. 8.

sz

Y

e

Fig. 8. Finite element mesh of the tensile graphite cast iron

The contour distributions of some characteristics, computed by finite element simulation are
presented in Fig. 9a-d. In this test, the onset of damage can be seen in the inner section of the
minimum cross section of specimen. The location of the equivalent damage variable field, obtained in
each stage of loading, is consistent during the test.
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Fig. 9. Simulation of the tensile graphite cast iron. Computed contour distributions at the end of loading

Figure 10 shows the comparison between the experimental and the predicted results by numerical
simulation. In this figure, stress is plotted against strain in critical gauss points that are in the middle of the
specimen. It can be seen that the experimental results can be accurately described by the present model. In
addition, the results obtained from the presented constitutive model are compared with the results from
Abaqus software with classical plasticity (Von-Mises) without considering damage, due to the
investigative effect of damage on the specimen. In Fig. 10, it is clear that ignoring damage in classical
plasticity has a significant effect on the accuracy of the results, and anisotropic damage has the ability to
predicate more realistic behavior of the specimen.

500 T LA
T I EE——EILLL
©
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S 300
P 1 Proposed
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0 0.05  Strain 0.1 0.15

Fig. 10. Experimental and analysis stress strain curves of graphite
cast iron under uniaxial tension
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Moreover, Fig. 11 shows the thickness change (lateral displacement) versus axial strain for tensile graphite
cast iron in critical point.

100

i} ™~

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Axial strain

Fig. 11. Thickness change (lateral displacement) versus axial strain for
graphite cast iron under uniaxial tension

8. CONCLUSION

In this work, using thermodynamics framework, an anisotropic damage model for iron-based materials is
proposed. Damage in metals is described and explained by using: damage tensor for mapping the stresses
from the undamaged to the damaged configurations, damage hardening rules (describing damage
evolution), and damage conjugate forces (using energy equivalence hypothesis).

Using anisotropic damage, the damage is expressed through a damage mechanics framework to
determine the stiffness degradation. In deriving the constitutive model, a yield surface combined with non-
associated flow rule is utilized to determine the onset and evolution of plastic strain and a damaged
surface with associated flow rule is utilized to determine the onset and evolution of damage. Therefore,
this model has the ability to demonstrate growth of anisotropic damage besides plastic deformations in
iron based materials.

Numerical simulations of some existing experiments, including tensile tests on specimens of
aluminum alloy plate and graphite cast iron have been performed, and the corresponding numerical results
are validated with the experimental measurements.
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