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Abstract– This study presents optimal distributions of steel materials in steel thin plate structures 
determined by using a classical element-wise and the present node-wise topology optimization 
design methods for a dynamic problem. More specifically, the present article describes an 
application of a node-wise topology optimization technique to the problem of maximizing 
fundamental frequency for plane structure. The terms element-and node-wise indicate the use of 
element and node densities, respectively, as design parameters on a given design space. For a 
dynamic free vibration problem, the objective function in general is to achieve maximum 
eigenfrequency with first-order eigenmode subject to a given limited material, since structures 
with a high fundamental frequency have a tendency to be reasonably stiff. For both static and 
dynamic problems SIMP (Solid Isotropic Microstructure with Penalization for Intermediate 
Density) material artificially penalizing the relation between density and stiffness is used in this 
study, and an implemented optimization technique is the method of moving asymptotes usually 
used for topology optimization. Numerical applications topologically maximizing the first-order 
eigenfrequency and depending on element or node densities as design parameters and varied 
boundary conditions to verify the present optimization design method provide appropriate 
manufacturing information for optimally form-finding of steel materials with Poisson’s ratio of 0.3 
into thin plates.           
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1. INTRODUCTION 
 

Numerical techniques based on finite element model are commonly used for structural analyses, and these 
provide basic information to determine appropriate structural systems “optimally” resisting horizontal 
forces. Therefore, the finite element model is linked to the so-called optimization of structures. 
“Optimization,” derived from the term “optimally,” is a mathematical discipline concerned with finding 
the minimum and maximum of needed functions, subject to so-called constraints. For example, rigidity 
and lightness are two opposite goals; however, optimization strategy tries to practically improve both of 
these two opposites. 

The numerical and mathematical step beyond the pure simulation of the mechanical behavior of 
structures is to optimize their response in advance of physical production and to fit it to the specific needs. 
Therefore, almost all finite element method codes have incorporated at least basic structural optimization, 
such as sizing [1-3], shape [4-6], and topology [7-9] capabilities, in order to support the design analyst. 

For both sizing and shape optimization the first design proposal is provided, such as a given initial 
sizing and shape, and is utilized as the start design. The arbitrary assumption of initial design in general 
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may result in unstable optimal solutions, which are absolutely dependent on initial design conditions. Thus 
far, classical optimization methods have mostly been based on the expertise and imagination of the 
designer, and thus solutions are not necessarily ideal. Topology optimization aims at solving this problem, 
and may be regarded as an applied tool for conceptual “imagination” information. Topology optimization 
has been developed to make the design stage easier and to find new design concepts. Topology 
optimization can be used with ease at the beginning of the design stage. The only required information is 
the design space, i.e. positions into which material is contained, the boundary conditions and the finite 
element model for discretization, which may be in contact with the optimized structure. No assumption 
about the number, the kind or the connectivity of structural elements is required, and therefore the efforts 
for modeling and preparation are extremely low and simple, in contrast to shape or sizing optimization. 

The topology optimization problem presented in this study is to determine the layout of material of 
specified volume in a continuous design space, which maximizes or minimizes objective function for a 
given set of loads and boundary conditions. This differs from a ground-structure approach [10] for discrete 
topology optimization, in which needless elements of all potential members are removed by using 
optimality criteria. In the classical area of material topology optimization methods of continuous 
structures, one main optimization model has been mainly studied thus far, which is termed “element-based 
topology optimal design” due to implementing constant densities within elements as design parameters. A 
well-known homogenization method developed by Bendsøe and Kikuchi [9] in 1988 is based on this 
design, and is the most popular microscopic approach. Solid Isotropic Microstructure with Penalty for 
Intermediate Density (SIMP) [11-13] is a simple macroscopic isotropic model and roughly approximates 
the material stiffness-density relationship of porous materials. The element-based design is an efficient 
formulation because it operates on a fixed mesh with a small number of design parameters. More recently, 
another model conforming to the main element-based design model in the area of continuous material 
topology optimization methods was introduced by Kumar and Gossard [14] in 1996, and this is denoted as 
“node-based design,” in which node densities are used as design parameters. For finite element analyses, a 
material property within each element is defined by a constant element density by arithmetically averaging 
node densities into one element. Since constant element densities are utilized for finite element analyses, 
contour parameterization and the SIMP penalization, this model can be considered a typical element-based 
design. 

In order to overcome the academic and conceptual treatment of topology optimization designs, in this 
study the SIMP method, which produces superior solutions with respect to engineering, is treated for the 
classical area of material topology optimization. In addition, for more practical applications, a dynamic 
problem such as free vibration [15] [16] using optimal material distribution is considered for topology 
optimization. The knowledge and experience of the dynamic behavior of structures caused by natural 
phenomena such as earthquakes and winds is often of primary importance in many engineering 
applications, particularly in the field of large-scale structural components, such as buildings and bridges. 
Prediction of modal parameters such as resonance frequencies and mode-shapes is an essential step in 
order to discover structural behaviors or responses for the dynamic design. 

The key point in this study is that the SIMP method for dynamic problems is implemented for both 
the present node-based and classical element-based designs. In particular, the present article describes an 
application of a node-wise topology optimization technique into the maximization problem of fundamental 
frequency for plane structure. Wang and Ni [17] treated nodal density as interpolant but restricted it to a 
linear elastic problem. Huang et al. [18] introduced evolutionary topology optimization based on element 
density variables under the condition of free vibration problems. The idea of applying the classical 
element-based topology optimization method for the dynamic problem is not new. There are many studies 
that have introduced topology optimization with respect to eigenfrequencies which are used for different 
objectives; fundamental eigenfrequency maximization [19-21], lowest eigenfrequencies maximization 
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[22] [23] [15]. The problem of minimization of structural responses caused by given dynamic load is also 
known as dynamic compliance minimization [24] [25]. 

Please note that a node-based SIMP method for dynamic problems is firstly presented in this study. 
The dynamic response is calculated using the Jacobi method [26] [27] of modal analyses. The method of 
moving asymptotes (MMA) [28] [17] is used as an optimizer. For static problems, numerical solutions 
based on comparisons between the element-based and node-based SIMP methods have already been 
investigated by Lee et al. [29, 30, 34-36]. 

This study is arranged as follows: in Section 2, the SIMP-based optimization formulation for 
dynamical problems is considered, Section 3 presents element-based and node-based design problems. In 
Section 4, numerical process comparisons of the element-based and node-based topology optimization are 
presented. Examples of evaluating topologically optimal shapes of steel plates for structural reinforcement 
are presented in Section 5. Section 6 presents the conclusions of this study. 
 

2. FORMULATIONS OF SIMP-BASED MATERIAL TOPOLOGY  
OPTIMIZATION PROBLEMS 

a) Optimization problem for dynamic structural free vibration system 

In continuous formulations of the material topology optimization problem, the design is given by a 
continuous scalar function Φ  from the fixed design space n

x   2n  to the allowed material density 
1Φ0  . The schematic of the continuous material topology optimization of a solid structure with 

specified field and boundary conditions is shown in Fig. 1. This study concentrates on the free vibration 
and eigenvalue problem without considering loads. Therefore, loading conditions for the specific dynamic 
problem need not be considered in Fig. 1. 

 
Fig. 1. Schematic for the material topology optimization of continuous structures 

Eigenvalue optimization designs are profitable for mechanical structural systems subjected to 
dynamic loading conditions like earthquakes and wind loads. The dynamic behaviors of structural systems 
can be estimated by eigenfrequency, which describes structural stiffness. In general, maximizing first-
order eigenfrequency can be an objective for dynamic topology optimization problems, as the stiffness of 
structures also increases when eigenfrequency increases. Problems of topology optimization for 
maximizing natural eigenfrequencies of vibrating elastostatic structures have been considered in the 
studies [9] [10] [12]. 

Assuming that damping can be neglected, such a dynamic design problem can be formulated as 
follows. 
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where 1  denotes the first-order eigenfrequency, i.e. a given objective function, depending on design 
variable Φ . V  and V0 are actual and nominal volume fraction, respectively. g denotes material volume 
limitation. K  and M  are the global stiffness matrix and mass matrix. Both matrices depend on the 
penalization of design variable Φ , as shown in Section 2.2 which follows. A consistent mass, a lumped 
mass, and a combination of consistent and lumped mass such as in the present study can be used for M . 
The inequality optimization constraint is maxmin ΦΦΦ0   of Eq. (4). In order to escape numerical 
singularity, the limit of Φ  is given as 0010Φmin .  and 01Φmax . . Equality constraints are provided by 
the dynamic free vibration equation of Eq. (3) and the limit on the required amount of material in terms of 
the constant volume 0V  of the design domain of Eq. (2). g  is the ratio between an obtained volume and a 
given volume constraint. 

b) Principles of the SIMP method 

The goal of topology optimization is to provide the optimal material distribution into a restricted 
space, i.e. the design space. For this purpose, the principle is to cut the design space into small finite 
elements and to determine which ones belong to the solution. 

Optimization variables correspond to the densities of each finite element. The relative density may 
take any value between 0 and 1, and an artificial material law (SIMP) is implemented to link together 
stiffness and density as 
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where 0E  and 0Φ  denote nominal values of Young’s modulus and material density of elements, 
respectively, and eN  is the number of elements. k  is the penalization factor and iΦ  is the relative density 
of element i . 

On the other hand, for node-based SIMP method penalization the formulation between Young’s 
modulus and node density can also be written as follows. 
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where 0E  and 0Φ  denote nominal values of Young’s modulus and material density of nodes into elements, 
respectively, and nN  is the number of nodes. k  is the penalization factor and ijΦ  is the relative density of 
node j  on element i . 

Equations (5) and (6) show that intermediate densities are allowed but that factor k  penalizes their 
use. This artifice allows the optimization problem to be solved more easily. In this study, these 
penalization formulations are used for dynamic optimal design as in Section 2b as well as for static 
optimal designs as in Section 2a. 

 
3. COMPARISONS BETWEEN ELEMENT- BASED AND NODE-BASED DESIGNS 

 
According to comparisons between element- and node-based designs for static problems represented by 
Lee et al. [29], the characteristics can be also applied equally for the present dynamic node-based SIMP 
method. For example, Fig. 2 shows density distributions into four elements with four nodes per element 
for element in Fig. 2a and for node in Fig. 2b based designs. Each element takes constant density, and it 
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should be noted that the constant element density for the node-based design is an arithmetic mean value of 
the densities of four nodes. It can be seen that optimal topology solutions for both element- and node-
based designs are evaluated by the same element-wise density distribution contours as shown in Fig. 2. 
Therefore, jagged boundaries occur between voids (0) and solids (1), which leads to the tendency of a 
conceptual design. This is a shortcoming of classical element-based topology optimization methods, not a 
practical design. As can be seen in Fig. 2, the jagged boundaries are more smoothed in the node-based 
design than in the element-based design. 

However, as can be seen in Fig. 3, density values between neighboring elements are compatible in 
node-based design, while density incompatibility occurs in element-based design. The density 
incompatibility indicates that the material density distribution is discontinuous among neighboring 
elements, as shown in Fig. 4b in Section 4. 

Substantially, the density information is not compatible between neighboring elements. Notably, this 
density incompatibility problem may result in a material boundary’s distortion near neighboring elements, 
like a checkerboard pattern or a loss of material volume when the density information is evaluated in 
elements using a contour line of specific level sets. Therefore, a material topology optimization method 
that can directly obtain material information at nodes, i.e. node-based design, is an ideal alternative in 
order to resolve the density incompatibility. 

 

 

 
(c) Design variables of element and node-based design 

Fig. 2. Comparisons between element- and node-based material topology optimization designs 

 

 
Fig. 3. Density compatibility of element- and node-based designs in one dimension 

 

(a) Contours of element-based design (b) Contours of node-based design 
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4. NUMERICAL ALGORITHMS OF ELEMENT- AND NODE-BASED MATERIAL  
TOPOLOGY OPTIMIZATION FOR DYNAMIC PROBLEMS 

 
The element- and node-based SIMP material topology optimization algorithms associated with FEM have 
the numerical steps of the following Subsections, and are compared in Fig. 4. Here, a MATLAB code 
introduced by Sigmund [11] is an element-based SIMP program for static problems, and the program was 
extended for dynamic topology optimization for node-based design. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Element- and node-based topology optimization processes in a given volume constraint of 50% 

a) Initialization 

For node-based design, node densities are given as design parameters, while element densities are 
assigned for element-based design. Their initial values are assigned by a reference volume fraction value. 
The objective function and constraints are defined to be an optimization model. Geometry of a structure, 
boundary, and loading conditions are defined in the design domain. 

b) SIMP method A: Classical element-based topology optimization using FEM 

Constant element density distributions of the initial design domain defined by constant material 
properties make almost voids (0.001) and solids (1) during the optimization procedures as shown in Fig. 
4b. Material properties within elements are constant and then material properties of neighboring elements 
are discontinuously distributed in the design domain. After some iterations, optimal density distributions 
of 0.001 and 1 are produced. 

c) SIMP method B: Node-based topology optimization using FEM 

Continuous nodal density distributions of the initial design domain are arithmetically averaged in 
order to be defined by constant material properties, and they make voids (almost 0) and solids (1) during 
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the optimization procedures, as shown in Fig. 4c, and continuous material properties within elements are 
distributed in the design domain. After some iterations, optimal density distributions of 0 and 1 are 
produced. 

d) Comparisons of element- and node-based topology optimization using FEM 

Figure 5 shows algorithm comparisons of element- and node-based design in material topology 
optimization. As can be seen, in element-based design, constant element densities are used for design 
variables and material properties during whole optimization processes. Unlike element-based design, 
node-based design uses nodal densities as design variables during every optimization process, but constant 
element densities linearly interpolated by nodal densities are assigned to each finite element for structural 
analysis of FEM. 

 

 

Fig. 5. Algorithm comparisons of element- and node-based design in material topology optimization 
 
Figure 6 describes the duality of sensitivity analysis in element- and node-based design for material 

topology optimization of maximal stiffness or minimal strain energy. Here, Φ and ρ denote element and 
nodal density, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Duality of sensitivity analysis in element- and node-based design in material topology optimization 
 

5. NUMERICAL APPLICATIONS AND DISCUSSION 

a) Topological optimal material layout extraction of element-based and nodal-based design 

This numerical application describes the principle of material layouts between element- and node-based 
designs in a given 3×3 design space. Figure 7 shows the geometrical material layout representations of (a) 
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element-based and (b) node-based topology optimization. The material layouts are Eulerian types which 
use fixed meshs. The layouts are presented by rectangular finite elements. The element-based design 
produces one material discontinuity line of 0 or 1 values of density design variables, while node-based 
design makes two material discontinuity lines due to intermediate density value regions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Representations of material layouts of element- and node-based design: (a) element-based design, (b) node-
based design, (c) the use of zero or 0.5 isoline (level sets) for describing material layouts Analysis models 

 
Figure 8 presents material layouts of a circle with curved material boundaries. As can be seen, node-

based design produces smoothness of material boundaries, while element-based design makes strong 
material discontinuities between solids and voids. The strong material discontinuities lead to omitting 
layout information detailed near the material layout. The use of density information on each node provides 
detained material layout information near boundaries between solids and voids. 

 
 
 
 

 
 
 
 
 
 
 

Fig. 8. Material layouts of a circle: (a) element-based design, (b) node-based design,  
(c) 0.5 isoline layout of node-based design 

b) Optimal material layout extraction for steel plate structures resisting dynamic behaviors: Deep beam 
of cantilever-type 

 
According to material layout principle of element- and node-based designs, this numerical application 

involves solution comparisons between element- and node-based designs for two-phase dynamic material 
topology optimization designs of 2D wall steel plate with a fixed support at the left side and a free support 
at the right side. Loading condition is not considered, because the example structures use simple free 
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vibration problem. The design domain (3m×2m) is defined in Fig. 9a. 30×20 finite elements are 
discretized in the design domain. Material properties are nominal Young’s modulus E =1.0 GPa and 
Poisson’s ratio  =0.3 for steel material. Isotropic material of plane stress is assumed. The objective 
function is a maximal first-order eigenfrequency dynamic problem. Total volumes are fixed to 30%, 40%, 
50%, 60% and 70% during every optimization procedure. MMA is used for element- and node-based 
optimization methods. 

 

 
Fig. 9. Analysis models: 2D wall structures 

Figure 10 shows the density distribution contours for element- and node-based designs in volume of 

50%. It can be seen that the results obtained through the node-based design are smoother than those 

obtained through the element-based design with respect to the material boundaries between solids and 

voids. 
 

Volume Node-based design Element-based design 

50% 

  

Fig. 10. Optimal topologies for dynamic topology optimization design: density distribution contours 
 

Figure 11 shows the 0.5 density isoline topology contours [31, 32] designed using element- and node-

based designs for dynamic eigenfrequency-based topology optimization methods. Please note that non-

connectivity between members does not occur in the node-based design. The optimal layout results from 

the use of a specific 0.5 isoline as shown in Fig. 12 that describes three dimensional density distribution by 

using element and nodal densities. As can be seen, material density distribution in the node-based design 

is significantly below 0.5 when a 0.5 isoline is used, in comparison with the distribution in the element-

based design. 
 

    
(a) Element-based design                                  (b) Node-based design 

Fig. 11. Optimal topologies for dynamic topology optimization design under material volume 40%: 0.5 isolines 
 

(a) cantilever beam space   (b) clamped beam space 
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(a) Material volume 30% 

   
(b) Material volume 40% 

   
(c) Material volume 50% 

   
(d) Material volume 60% 

   
(e) Material volume 70% 

Fig. 12. Optimal topologies for dynamic topology optimization design: three-dimensional density function 

c) Optimal material layout extraction for steel plate structures resisting dynamic behaviors: Clamped-
type 

The goal of this numerical application is the same as in Section 5.2. The structure is a 2D wall 
clamped structure with a fixed support at both the left and right sides. Loading condition is not considered, 
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because the example structures use a simple free vibration problem. The design domain (4m×2m) is 
defined in Fig. 9b. 40×20 finite elements are discretized in the design domain. Material properties are 
nominal Young’s modulus E =1.0 GPa and Poisson’s ratio  =0.3 for steel material. Isotropic material of 
plane stress is assumed. The dynamic behaviors of structural systems can be estimated by eigenfrequency, 
which describes structural stiffness. In general, maximizing the first eigenfrequency can be an objective 
for dynamic topology optimization problems, since the stiffness of structures also increases when 
eigenfrequency increases. Therefore, the objective function is maximal first-order eigenfrequency for the 
dynamic problem. Total volumes are fixed to 30%, 40%, 50%, 60% and 70% during every optimization 
procedure. MMA is used for element- and node-based optimization methods. 

Figure 13 shows the density distribution contours for element- and node-based designs with a volume 
of 60%. It can be found that results of the node-based design are smoother than those of the element-based 
design near material boundaries between solids and voids. 

 
Volume Node-based design Element-based design 

60% 

  

Fig. 13. Optimal topologies for dynamic topology optimization design: density distribution contours 

 

   
(a) Element-based design                              (b) Node-based design 

Fig. 14. Optimal topologies for dynamic topology optimization design under material volume 50%: 0.5 isolines 
 
Figure 14 shows the 0.5 density isoline topology contours [31, 32] designed using element- and node-

based designs for dynamic eigenfrequency-based topology optimization methods. As can be seen, the 

checkerboard patterns with enforcing material discontinuities of voids and solids at the node-based 

designs is more relieved than that in Section 5.2. Please note that the checkerboard patterns with enforcing 

material discontinuities of voids and solids do not occur in the node-based design. The optimal layout 

results from the use of a specific 0.5 isoline, as shown in Fig. 13, which describes three-dimensional 

density distribution by using element and nodal densities. 

Figures 10-15 provide efficient information of optimal shapes and deposition of the steel plates, when 

reinforcement design of steel plate is considered in the given design space, such as a cantilever and a 

clamped beam. 

Please note that the two examples of Fig. 9a, i.e., a cantilever beam design space, and Fig. 9b, i.e., a 

clamped beam design space, are verified, since the optimal topologies of a clamped beam join exactly at 

the symmetric half, i.e., those of a cantilever beam. 
As can be seen in Figures 11 and 13, the result of the node-based method does not seem to be 
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connected with some members. For this reason a 0.5 isoline contour is used. Density distributions below 
0.5 values exist near the regions of non-connectivity. 

 

   
(a) Material volume 30% 

   
(b) Material volume 40% 

   
(c) Material volume 50% 

   
(d) Material volume 60% 

   
(e) Material volume 70% 

Fig. 15. Optimal topologies for dynamic topology optimization design: three-dimensional density function 
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(a) Element-based design           (b) 

Node-based design 

Fig. 16. Convergence curves of element- and node-based design in volume fraction 70% in Fig. 5b 
 
Figure 16 shows convergence histories of element- and node-based design under a volume of 80% in 

clamped structures. As can be seen, node-based design produces convergence of objective function faster 
than element-based design, although the number of design parameters in node-based design is 7.6% more 
than that of element-based design. It seems that density compatibility or continuity among elements, as 
shown in node-based design in Fig. 3, enforces the sensitivity of design parameters, and results in fast 
convergence. 
 

6. CONCLUSION 
 

This study presents an alternative approach, i.e. the so-called node-based design method, to classical 

element-based SIMP material topology optimization for dynamics problems, and also makes an effort for 

practical applications of topology optimization for optimal form finding of dynamic structures. For static 

problems, the methodology of node-based design in comparison with the classical element-based design 

has already been introduced by the author [29] [30]. In the preceding we have demonstrated that node-

based design can effectively solve a wide range of eigenfrequency topology optimization problems. 

Compared with the existing classical element-based topology optimization techniques, the greatest 

advantage of the node-based design method is smoothness of material distribution contours by using the 

arithmetic mean of node densities and density compatibility, i.e., material continuity, between neighboring 

elements. In this study, these advantages were also verified for dynamic problems. 

Two examples on optimal form finding of steel thin plate structures for dynamic free vibration 

problem which are deposited into a cantilever and a clamped type verified the superiority and the 

efficiency of the topology optimization design method for structural design. 
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