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Abstract– For dynamic analysis of structure, the calculation of eigenvalues and eigenvectors is 
necessary. When the structural models are symmetric, such calculation can be simplified using 
some of the concepts of graph theory. In this paper, two methods are presented for eigensolution of 
space Truss. The first method uses a graph model and employs a decomposition and healing 
process for factorization of the graph model and calculating the eigenvalues of graph. The second 
approach uses the canonical forms for the construction of submatrices, from which, the 
eigenvalues can be obtained. Both methods lead to identical results.           

 
Keywords– Free vibration, Forced vibration, canonical forms, graph theory, buckling load, space trusses  
 

1. INTRODUCTION 
 

Symmetry has been widely used in science and engineering [1-5]. A thorough review can be found in the 
work of Kangwai et al. (1999). Methods are developed for decomposing and healing the graph models of 
structures, in order to calculate the eigenvalues of matrices and graph matrices with special patterns [6-9]. 
For symmetric structures, it is advantageous to use this property for studying the free vibration and 
stability analysis of these structures. In this paper, special canonical forms, namely the Form A and the 
Form B matrices previously developed for planar trusses are extended for the free vibration analysis of 
three dimensional trusses. These forms are used for efficient calculation of the eigenvalues of symmetric 
structures. Here, two methods are presented, the first approach uses graph theory and the second method 
has an algebraic nature and the degrees of freedoms are ordered, employing a combination of symmetric 
and anti-symmetric to form the canonical forms. In the first method, special definitions are used to form 
the Laplacian matrices of the required canonical forms, and then using special operators the submatrices 
are constructed from which the eigenvalues are easily calculated. In the second approach, the stiffness 
matrix is formed for the entire structure and using the symmetry and anti-symmetry for its entries the 
required canonical forms are constructed, and employing special operators the submatrices are formed 
from which the eigenvalues of the entire structure are calculated. Finally, examples are studied to illustrate 
a step by step process of the presented methods. 

 
2. DETERMINATION OF SYMMETRIC FORMS FOR A AND B BY  

USING THE GRAPHS THEORY RELATIONS 

a) Determining the form of a using graphs theory relations 

In a symmetric graph if the left sides of symmetry axis nodes are numbered at first and then the right side 
of symmetry axis nodes, the following steps are applied: 
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1. If there is a symmetric graph, select two symmetric node categories  21, NN .Noting that both of 
these categories are symmetric, each of them can be divided into two sub collections.  

          lRLR NNNN 2211 ,,,                                                               (1) 

2. D matrix for the whole graph can be defined as follows: 
3. Two sub graphs are formed as follows: 
3.1. Sub graph 1G : deletes all members that connect  RN1  to 2N . 
3.2. Sub graph 2G : this is a graph that includes connecting members between nodes of RN1 and 2N   
3.3. G graph which is a combination of the two upper graphs is formed, but 2G  members are represented 
by dashed line.  
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Dashed line loops are recognized by negative sign, and i is the number of node loops.  
 ijaA   is number of members whose direction is from i to j (members with no sign means 

members with two directions). 
When members are represented by dashed line it means they have a negative sign. As a result, 

modified symmetric Laplacian matrix is obtained in the following form: 
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Matrices are symmetric, except sub matrix F that is anti symmetric. By applying row and column 
operators, matrix 'L  can be changed to an upper rectangular matrix [6-7]. 
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                                                                 TSL   

b) Determination of B form by using graphs theory relations 

At first, the left side of symmetry axis nodes are numbered, then the right side symmetry axis nodes, 
and finally nodes that are mounted on the axis symmetry.  
1. If there is a symmetric graph two categories of symmetric nodes  21, NN  are selected. Regarding the 

symmetry of these categories, each of them can be divided into two collections.  

                                                                     ClRCLR NNNNNN 222111 ,,,,,  
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CC NN 21 , are nodes of two collections  21, NN  which are on the symmetric axis. 
2. Matrix D can be defined for the whole graph as follows: 
3. Two sub graphs are formed as follows: 
3.1. Sub graph 1G : members that connect RN1 to 2N and CN1 to RN2 are deleted. 
3.3. Sub graph 2G : members that connect  RN1 to 2N and CN 1 to RN2 form a graph. 
3.3. Graph G which is a combination of the two upper graphs is formed but the members of sub graph 

2G are represented by dashed line.  
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Dashed line loops are assumed with a negative sign, and i is the number of node loops.  
 ijaA   are members whose directions are from i to j (no direction members means double sided 

members). 
Members that are represented by dashed line have negative signs. 

'D is modified degree matrix, 'A is modified adjacency matrix and L is modified Laplacian matrix. 
Notice: between CN1 and CN 2 there shouldn't be any connecting member.  

Example 1: A symmetric graph as shown in Fig. 1 is considered. Its eigenvalues are calculated as follows: 
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Fig. 1. Symmetry graph 
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Fig. 2. Formation of S, T sub graphs 
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3. DETERMINATION OF SYMMETRIC FORMS OF A AND B BY USING  

DIRECT AND REVERSE SYMMETRIC RELATIONS 
 

a) Determination of symmetric form of A by using direct and reverse symmetric relations 

Assume coordinate system in the three dimensional space is shown with numbers 1-2-3. If there is a 
symmetry plane in this space and this plane is parallel to 3-2 surface, then mirror of every vector in 3-2 
plane regarding the symmetry plane will be itself, while the mirror of every vector parallel to vector 1 
regarding  the symmetry plane will be in inverse direction of 1 (Fig. 3). 
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Fig. 3. Symmetry plane 

 
Now, without attention to symmetry, each distinctive matrix (stiffness, mass, damping) for a structure 

with a part of it in one side of an assumed plane parallel to 2-3 surface, another part in the other side of the 
this surface, and DOFs for each node of it defined parallel to 1-2-3 axis, can be written in the following 
general form: 

 
Table 1. The (stiffness, mass, damping …) matrix of structure 

Degree of freedom of the right side Degree of freedom of the left side   
3Direction 2Direction 1Direction 3Direction 2Direction 1Direction   

L J G F D A 1Direction 
Degree of 

freedom of the 
left side 

K H M E B DT 2Direction 

I O N C ET FT 3Direction 

U S P NT MT GT 1Direction 
Degree of 

freedom of the 
right side 

T Q ST OT HT JT 2Direction 

R TT UT IT KT LT 3Direction 
 

There are no nodes on the former assumed plane. In this case matrices R, Q, P, C, B, A are 
symmetric. Now, if this plane is a symmetric plane, first, it should be noted that number of DOFs in the 1, 
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2, 3 directions in the right side of this plane is equal to the same in the left side of this plane. Therefore 
matrices I, H, G will be square.  

It should be noted that the obtained relations for this load are more general than the obtained relations 
for two-dimensional case. One of the differences between these two cases is that, while in two-
dimensional cases it is considered that the number of degrees of freedom is equal in 1, 2, and 3 directions 
in three-dimensional cases, this consideration is not valid and the problem will be investigated in a more 
general situation. It is assumed that the DOF in direction 1 in each side of symmetry plane is equal to m, 
the DOF in direction 2 in each side of symmetry plane is equal to n, and the DOF in direction 3 in each 
side of symmetry plane is equal to o. This means some DOFs can be active or inactive, while the 
symmetry conditions in both sides of symmetry plane should be retained. Ordering in both sides of 
symmetry plane is as follows:  First, all DOFs in direction1 in left side of symmetry plane are numbered, 
then the numbering of the DOFs in direction 2 in left side of symmetry plane, and finally DOFs in 
direction 3 in left side of symmetry plane are numbered. A similar numbering is then performed for the 
DOFs of the right side.  

Example 2: Consider indeterminate 3D truss as shown in Fig. 4 which has 20 elements; frequencies and 
buckling loads of the structure are calculated:  

27 /1007.2 mkNE  2100 cmI  3/7800 mkg 210 cmA   

 
Fig. 4. Symmetry and indeterminate 3D truss 

 
All DOFs of nodes of 1, 5 and 1, 2 DOFs of nodes 2, 6 are inactive. The only symmetry plane is 2-3 

plane. At first, the left side symmetric plane nodes are numbered then the right side of symmetric plane 
nodes. The numbering of the right side is the same as the left side. In the above truss the number of DOF 
in the directions of 1, 2 (m,n) in each side of symmetry axis is equal to 2 and the number of DOFs in the 
direction 3 (o) in each side of symmetric axis is equal to 3. 
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b) Determination of symmetric B form by using direct and reverse symmetric relations 

Now a case is considered with nodes on symmetry plane (Fig. 5): 
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Fig. 5. Symmetry plane with nodes on itself 

It is considered that the number of DOFs in direction 1 for each side of symmetry plane is equal to m, 
number of DOFs in direction 2 for each side of symmetry plane is equal to n, and number of DOFs in 
direction 3 for each side of symmetry plane is equal to o. The DOFs in direction 1 on the symmetry plane 
is m , the DOFs in direction 2 on the symmetry plane is n , the DOFs in direction 3 on the symmetry 
plane is o . Ordering in two sides of symmetry plane is as follows: First, all DOFs in direction 1 in the 
left side of symmetry plane are numbered, DOFs in direction 2 in left side of symmetry plane are 
numbered, and then DOFs in direction 3 in left side of symmetry plane are numbered. After that, a similar 
procedure for numbering is performed for DOFs of the right side. 

Example 3: Consider indeterminate 3D truss as shown in the Fig. 6, frequencies and buckling load of the 
structure are calculated as follows: 27 /1007.2 mkNE  4100 cmI  3/7800 mkg 210 cmA   

 
Fig. 6. Symmetry and indeterminate 3D truss 
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4. CONCLUSION 

Large eigenvalue problems arise in many scientific and engineering applications. In such problems, the 
numerical determinants to be calculated are very complicated, and special approaches for these problems 
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are more effective. Eigenvalue problems include combinational and mechanical problems. Here only 
mechanical problems are investigated. This is performed by using special symmetry forms, and large 
problems are transformed into smaller sub problems. This reduction in size leads to higher accuracy and 
reduction of the calculation time for the solution of these problems.    

The methods presented for decomposition and healing for 3D trusses reduce the computational 
storage and time for eigen solution of structures. From the two methods, if the decomposed substructures 
are themselves symmetric, then further decomposition is possible.  
Although this study is made for the free vibration and the forced vibration of the trusses, the saving in 
computer time increases by the size of the structural models.   
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