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Abstracti This paper presents new sensitivitgsed methods for detection of structural damage

using incomplete noisy modal data. These methoelbased on the firgirder derivative of modal

parameters. Changes of natural frequency do not usually provide spatial information on the

structural damage. They are also not sensitive to the local damage. In this paper, a new sensitivity

function is propsed using method of Lagrange multipliers in order to deal with these weaknesses

when applying natural frequency in the sensitiigsed damage diagnosis. Mode shape is the

other vibrational data which leads to better results in comparison with naagqaéfrcy. However,

usually some mode shapeds sensitivities require al
Thus, an improved sensitivity of mode shape is presented to constitute an applicable formulation

based on using incomplete modes. To detegrttile damage quantity, a powerful iterative method

named LeasBquare Minimal Residual (LSMR) technique is proposed in the condition of

incomplete modes. Subsequently, Regularized L8gsare Minimal Residual (RLSMR) method

is presented to detect stru@bidamage when the incomplete modal parameters are contaminated

by noise. Applicability and effectiveness of the p
two practical examples consisting of a-stery shear building and a planner truss. Eventually,

numerical results indicate that the LSMR and RLSMR are influential algorithms for precisely

determining the damage severity. Furthermore, obtained results of damage diagnosis process in the

free-noise data show that the proposed sensitivities of nattggléncy and mode shape can

provide reliable and accurate results for structural damage diagnosis.

Keywordsi Structural damage diagnosis, sensitihigsed method, Least Square Minimal Residual, incomplete
noisy modal data, regularization method

1. INTRODUCTION

A structure may be prone to damage when being subjected to severe loadings like strong earthquakes or
blasts or when its inherent properties like cresstion, modulus of elasticity and dynamic properties
(mass, stiffness) are advessehanged. Recently vibratidrased techniques have been widely applied in

the structural health monitoring and damage detection process due to advances in dynamic testing. In these
techniques, it is assumed that the physilylamic properties of the stiwre are changed when the
damage occurs. Vibrational responses of the structure depend directly on these properties; therefore the
occurrence of damage leads to adverse alteration in the structure's vibrational responses. Throughout
recent decades, devploent of experimental modal analysis techniques has facilitated the accurate
measurement of modal data in different types of structures. Hence, the structure's modal data including
natural frequencies and mode shapes are the most practical dynamic ioforfoastructural damage
diagnosis. Consequently, changasstructure's physical properties (mass and stiffness) will cause the
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main alteration in its modal data. This alteration can be considered as a criterion for identifying and
detecting the damage the structures.

Several methods have been developed to detect damage using changes of modal data or methods,
which are dependent ahem such as mode shape curvature, modal strain energy (MSE), modal assurance
criterion (MAC) and modal flexibility. Caley and Adamg$1] detected structural damage (i.e. a crack) by
decreasing natural frequency and increasing damping. fslééssina et al[2] utilized the difference
bet ween a few number of structureds natur al frequ
the damage location and then find its ektdree and Chung3] presented a method for locagitthe
damage (e.g. find the position of crack) and then determining the damage extent using a few natural
frequencies. Moreover, Kim et 1] proposed a mthod for nordestructively locating and estimating the
extent of damage in the structures in which a few natural frequencies or mode shapes are available. Su et
al. [5] located the damage in a shear building in which properties of stories (stiffness and mass) change
during the life cycle. They utilized the sstructural natural frequencies of the shear building and
identified thedamage location by comparing the natural frequencies e$tsuttures in different stages.
Esfandiari et al[6] proposed a new frequenbased technique in the form of an improved K@Mty
equation of natural frequency to detect any number of localized damages which induce reduction in a
structure's stiffness. Moreover, Ranjbaf@hderived a new and general governing differential equation
for eigenvalue analysis of cracked members and also determined the exact analytical solutions for
eigenvalues and mode shapes of timembers.

Using natural frequency for detecting the structural damage is advantageous owing to its convenient
measurement and high accuracy. However, this method cannot provide spatial information regarding the
structural damages and also is not sensitvwaigh t o t he | ocal damage. Th
changes or its sensitivity are used to evaluate damages in the structural systems. Ejipbpbsed a
statistical sensitivilbased approach namely multiple damageation assurance criterion (MDLAC)
met hod which is a deyv e[2olpthemethodoirfcompletesnsodersiaapesis used t h o d
instead of modal frequency. Rahai et[8], presented a global algorithmrfdamage detection based on
parameter estimation method using finite element analysis and incomplete measured mode shapes. Zhu et
al, [10] developed an efficient damage detection algorithm for shear buildings by using chamgefirsitf t
mode shape slopes (CFMSS). Moreover, they determined the damage extent using the modified CFMSS
values. Baghiee et aJl1] detected the damage location and damage extent as crack in a reinforced
concrete beam equipped with CFRP by means of seviicier®t methods such as frequency changes,
modal assurance criterion, coordinate modal assurance criterion (COMAC) and modal curvYatueds.
al, [12] proposed a new sensitivity equation of modal strain energy for structural damage diagnosis. They
presented a statistic damage detection algorithm based on the-fdoeegquation of element's modal
strain energy sensitivity with ambient vation measurements where only the operational mode shapes are
available.

In this paper, new sensitividyased methods, which are based on the-desivative of natural
frequency and mode shape, are presented to detect the structural damage witteiacooigt modal
data. These methods are simple, effective and accurate as \ableamobviate weaknesses of modal
data's sensitivity equations. In this regard, a new sensitivity equation of natural frequency is proposed by
the method of Lagrange mulligrs. The main parameters in this sensitivity equation are Lagrange
multipliers and dynamic properties of structure. Hence, these multipliers and inherent properties of
structure may overcome the main weaknigvdysiretse and a
structural damage diagnosis. To establish the sensitivity of mode shape, the modal method is improved
with respect to existence of incomplete modal data and using flexibility matrix. In the improvement
approach, some inefficiency and compuiao n a | errors of the mode shape
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method are entirely obviated and a powerful algorithm is presented for determining the damage extent.
Subsequently, a novel technique called Least Square Minimal Residual (LSMR) is propoded toeso
damage equation (penalty function) when incomplete modal data are available or the sensitivity matrices
have some singular values close to zero. The LSMR is an iterative method that lEgjaganalization

process for solving the linear mathematiequations. In general, the problem of dynamic systems is ill
conditionedand requires some regularizatiofi$herefore, Regularized Least Square Minimal Residual
(RLSMR) technique is presented which solves the Tikhonov regularization objective fuimctam
iterative manner. The RLSMR develops LSMR method by adding a regularization parameter to the linear
mathematical equations. Therefore, by adding this regularized parameter and also applying the property of
RLSMR, the effects of perturbations (noiswta) on the damage diagnosis process are reduced
significantly. Two practical examples including a -sbory shear building and a planner truss are
numerically modelled toerify the proposed methodis can be concluded that the LSMR and RLSMR are
potentally able to detect damage extent in an iterative manner by comparing the amounts of predicted and
induced damages. Moreover, it can be observed that the amounts of determined relative error for the
improved sensitivity of mode shape (ISMS) and proposeditbéaty of natural frequency (PSNF) are
negligible. Moreover, the results confirm that ISMS is more accurate than the modal method and remains
valid when this method fails. Furthermore, the correctness of PSNF is dependent on Lagrange multipliers
and dyramic properties of structure. Therefore, this method can be applied in LSMR and RLSMR for
detecting the local damages with a high accuracy even when incomplete noisy modal data are available.

2. THEORY

a) The proposed method for determining the sendijiaf natural frequency

The firstorder derivative of natural frequency with respect to the damage pardmncatebe described by
differentiation of undamped generalized eigenvalue problem:

A K Mg
db /igeﬁ { b g/ 1)

whereM andK are the mass and stiffness matrices of structure respecﬂi\/@ty;ﬁ/is thei™ eigenvalue

and; is i™ natural frequency. Moreovefi, is thei™ mode shape (eigenvector) of the structiregeneral,

Eqg. (1) is not a suitable equation fagingused in the damage detection process. The variation of natural
frequency gives no spatial informationdaalso is not sensitive to local damages. Several researchers have
demonstrated the poor performance of this equation in complex structures under damage patterns of low
damage extent. Therefore, a new approach based on the method of Lagrange mudtiptigpeded to
constitute a new efficient technique that can obviate the existing ambiguities and weaknesses while
applying Eg. (1). In mathematical optimizations, the Lagrange multipliers approach is a methodology for
finding the local maxima and minima afmain function, which is subject to some equality constraints. In

this method, the partial firgirder derivatives of Lagrange function with respect to its unknown variables
should equal zerfil3, 14]. The algorithm of Lagrangeds derivati
being applied in the sensitivity analysis. Hence, in this paper, the algorithm of Lagrange multipliers
method is applied to generate a new sensitivity equation for n&tegalency. The main function in the
Lagrange method is defined as natural frequency of'theode and equality conditions are characterized

as mass and stiffness orthogonality conditions as well as the generalized eigenvalue problem. Thus, the
final equaion of Lagrange function can be expressed as follows:
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L(b1/=/; a1©:m +[(Ka-iM) i/ i+(./|.TKib i./')- iz(i"'TIVVi J)? (2)

whereU, b andd are Lagrange multipliers that can be determined byptréal differentiation of
Lagrange function with respect to its main variables ooy eigenfrequency( L /),Ovede shape
(O L /;)@rid the multipliers of Lagrange functiod [ /, @10/ a@dO L /).Glaus:

Po=B el (K M) K TK) (M MY 0 )

In general, the natural frequency is independent oflenshape an@®,/ © élways equals zero.
Furthermore, the mass and stiffness matrices are positive and symmetric. Thus, it can be deduced
thatK/j, = f K andM/, = f M. Eq. (3) can be rewritten as follows:

Pe=(k IM) @ @ gk 2r(M ) P @
The partial derivative of Lagrange function with respect to the natural frequency is determined as:

Wooiamj b0 (5)
W

On the ot her h a rifferentiators foamubimieidd b andd can beafdrmulated as
follows:

pL .

Z=(K 4M)j @ )

= )/

[V

_f_ iKl -i/(:): 7
Ji K4 (7)

Lojimjae (8)

g =
Q

To calculate Lagrange multipliers, Eq. (4)sitiplied by /| and thus:
JT(K- M) ae (67K, ) & (8 .) O (9

It is obvious from Eg. (6) that[ (K - (M) or (K - /;M ) jequal zero. Based on Egs.{®8), it can
be observed that! K j = ,and/'M j =1. By inserting these results into Eq. (9), it can be seen that:

q=-p (10)
By replacing Eqg. (10) in Eqg. (4), it can be written:
(K-/M)a® K )2, M) 09 (11)
This equation can then be simplified as:
(K-/M)a® K -M), 0 (12)

Once again, the result of Eq. (6) is used and the vector of Lagrange mullipdierbe calculated by
solvingthe equation below:
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(K-/M) a0 (13)

Subsequently, Lagrange multipliecan be determined through Eq. (5) as follows:
b =1-am (14)

As a consequence, the last multiplier of Lagrange function can be computed using Eq. (10) after
calculating the multiplieb. By determining the Lagrange multipliers, the total fosder derivative of Eq.
(2) with respect to damage parametesshould be formulated to constitute the sensitivity of natural

frequency.

db db db
where
ZQK _/iM)j i-l.—/.Ki/._i /iTMji 17 (16)
J :éé b ZE (17)
Derivative of the second expression of Eq. (15) can be expressed as:
dgB(b)J,
g3(b) gaB(b) , & (b) 3L (18)
db db db
It should be noted thattbe( Lagr ange mul tiplierso6 vector) wild/l
conditions:
(v..B(b))=() B(b) © (19)
dB (b) - dB(b &
JL,|3(b)+W £J7) a8(b) —h 60 (20)
g -

According to these equations, the first expression of the-higind side of Eq. (18) should equal zero.
On the other hand] /db always equals zerd herefore,d gB J /@b 0 and this expression is

eliminated from the total derivative of Lagrange function. As a result.
dL d/
db~ db

The total derivative of Lagrangerfation can be extended by partial derivative of its variables as
follows:

(21)

dL _pL d udj, 6 Bud/ &0Lga g& Lduw 6 Bdp
db  pb gbepi db SF@ db Sdf_mb 9854 T (22)

As expressed before, the expressions /;, 0t /@Oreed di f ferentiation of the
(OL /,®W/ addd L /) éhduld equalero for computing the Lagrange multipliers. Thus:

dL _pL Ku Mps & K p, o M u
— = =1 /i__ 5 i i/ ¢ 23
b w b En' opd Foy 27F LA *3)
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In this equation, the partial derivative of natural frequency with respeotalavays equals zero.
According to Eqgs. (21)(23), it is clear that the total deriee of natural frequency is equivalent to the
partial derivative of Lagrange function. Thus, the proposed sensitivity of natural frequency (PSNF) can be
formulated as follows:

d/; _ _raK M 6. a Ku -0 r MU
——=a o (—— &/ Yt bt Jid i 24
db &b { b 2 & 8 6%’;1 (24)

In this study, it is assumed that the sttual damage is not accompanied by a change in the mass
matrix. In addition, it is assumed that stiffness reduction leads to occurrence of damage in the structure.
Hence, the firsbrder derivative of mass matrix is omitted from Eq. (24). Accordingly,stesitivity
function of natural frequency for detecting damage extent can be written as:

d/, _ VaUK B
%—(a? +PiT/)8eE 0 (25)

As can be seen in Eq. (25), the proposed sensitivity of natural frequency is formulated by using
L agr an g e 6sandihelvdriatipnl of séffness matrix that can be easily computed by linear algebra
and simple mathematical formulations. Moreover, another advantalgebposed method is that PSNF
does not require mode shapes of the damaged structure and theteésreot increase the volume of
measurement process and equipment's cost.

b) The improved method for determining the sensitivity of mode shape

Based on vibration theory, the mode shapes of a structure are independent; thus, it is possible to
constitute e sensitivity (firstorder derivative) of each mode shape separately. In this regard, several
researchers have introduced different methods for calculating the sensitivity of mode shape. For instance,
many methods including the model metlja8, 16], Ne |l s o n[&7sl9], e aldelraic methd@o,

21] and the modal methd@2-24] have been proposed or developed to create a simple and reliable way

for calculating the sensitivity of mode shape. Howeveis ftequired to improve the structure of some
mentioned approaches to better their performance. Therefore, these methods should be modified for the
case of incomplete measured modes and even complicated structural systems. One of these approaches is
the moal method that was introduced Bpx and Kapoof22]. The sensitivity of mode shape can be
described by expressing its derivative as a linear combination of all modes:

%:éC/ 26
in which:
& jT 3 5
?//-J aeaw;_,iﬂmg o
=i fe ™ N 27)
| ) . .
i -O.S'JTE/J. it i3

In this study, the structural damage is introduced by the stiffness reduction factor and thus mass
variation does not influence on the sensitivityrmdal data. Hence, the coefficietan be modified as:

JT &K o
c. = — A (28)
Lol (¢ B 2
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The modal method is widely used in engineering applications particularly in sensitivity analysis due
to its simplicity. However, this methodqeires all mode shapes to obtain an exact sensitivity equation of
each mode. Measurement of all modes is a significant computational task in the modal analysis techniques
and sometimes only a few modes dominate the dynamic behaviour of structure. Thevh&arethe
modal data are incomplete, the modal method does not provide appropriate results. In this study, an
improved method is presented to deal with this weakness by developing the modal method. It is assumed
that m modes are identified for a structusystem withn degrees of freedom. Hence, the improved
sensitivity of mode shape (ISMS) can be described as follows:

Yi-Acj, +ad 29)
db = I i . 1+J |
Assumingn andmmodes are available, Eq. (29) dammodified as:
d an.. .M.
d/bl _a ¢/; tead j -a& (30)
j=1 (;;J £ =

Consideri ng [¥8h it gad be asstned in ynodal analysis tinatn and thereforeal &.
Accordingly,d, can be written as:

o = Lrak o (31)
] /i ¢ub "=
The second part of Eq. (30) can be expressed as:

A B .5

4? —E i/ 9, . (32)

It is clear that); is a fix1) vector. Based on the fundamental concept of matrix analysis and linear algebra,
Eqg. (32) can be rewritten as:

&7 8K 5 M A B .6
= = 33
q, %@—g / @m /9 j‘? ‘E—E i QJ/ (33)

The first expression dq. (33) is similar to the main equation of flexibility matrix that can be
determined by modal paramef{@6) as follows:

oA L
-Q,— Ji (34)

On the other hand, the flexibility atrix always equals the inverse of stiffness matfixK™). Thus, the
equation of mode shapeds sensitivity can be descr

dj, &, /] aK 50 7 A W 50 , Kua
—'—ag— e +a J o KT — (35)
db _1g| {(} +§ Ji@_@ +l§ bl-?
Final equation of mode shapeds dasfollswst i vi ty for da

d/ maa/J /S 8K 5 O P |
i= K 4 6
s a og 7@ i/ (36)

it TR -
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As can be observed, the improved sensitivity of mode shape (ISMS) has been constituted by adding the
flexibility matrix (inversed stiffness) and a coefficiegl't].T(/ /) to the old version of modal method. It is

clear that the flexibility matrix directly/depends on the mode shape and the reciprocal of natural
frequency. Moreover, the effect of hififiequency components on the flexibility matrix is reduced with

the increase of natural frequency. Thus, this matrix has enough accuracy for using a numberdétow
modes and frequencies. Therefore, presence of flexibility matrix in Eq. (36) leads to an increase in the
precision of mode shape's sensitivity.

c) Damage dection by LeasSquare Minimal Residual (LSMR) method with incomplete modal data

Leastsquare method is the most currently used mathematical approach for solving damage equation
when sensitivity function is available. In general, the damage equatioredatrdduced by truncation of
Taylor series which is defined as Penalty function:

Shb= D (37)

where S and qpyare sensitivity (coefficient matrix) and difference matrix of modal data, respectively.
Furthermoreb is the damage vector that should be calculdtesthould be noted thae ydepends on to the
way the sensitivity function is used. In other words, mwhee sensitivity of natural frequency is applied,
aeVis defined as the difference between natural frequency of undamaged and damaged structures.

To utilize the sensitivity of mode shape in the algorithm of damage diagemgsdescribed as the
discre@ncy between mode shapes of undamaged and damaged struSinpes.modal data are
incomplete, the sensitivity matrices are defined as rectangular matrices. Therefore, Eq. (37) can be solved
by the direct leastquare method as follows:

b=(s"s) $ Dy (38)

As some singular values of sensitivity matrix are close to zero, the condition nun®)8i# large
guantity and therefore its inverse cannot be accurately determinetheinwords, the results of Eq. (38)
do not have enough precision. Thus, in these cases iterative methods such -&quaastMinimal
Residual (LSMR) have got better performance in comparison with direct approaches. In general, this
method is proposed 8blve linear systemSb=tpyand least square problemstoynimizing the norm Sb
Y. It is analytically equivalent to the Minimal Residual method and is applied to the normal equation
S'Sh=S'myso0 that the quantitiésS'r; are monotonically decreasing. It should be mentionatt thep yi
Sk is the residual for the current iterdig In fact, by is an approximate solution for the equat®lorpy
which is obtained from LSMR algorithm in th& step by applying the conditionini S'ry B practice, it
can also be seen that, is monotonically reduced. The LSMR algorithm uses an algorithm of Golub and
Kahan, which is expressed as the bidiagonalization proc¢a@ra7]. To reducesto a lower bidiagonal
form, bidiagonalization process can be performed as follows:

xu, =B (39)
hv,=S"y (40)
Fori =1 , tRe laét two equations can be expressed as:
XU =Sy -/ (41)
BaVi 4=ST Y 4 - X0y (42)

ThescalarsO0 gdQ@ ar e c¢ h o s e ,s1uBy bsing thdsidiagonalization proess,
the LSMR method yields an approximate solution for determining the unknown parbgatérek™ step
so that S'ry is monotonically decreasing.
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b, =V, z, (43)

whereV, is a matrix withk columns, each column of which is the veatofhus:
Ve=[vi v, oo V] (44)

Furthermore z is given by minimizing the normS'r; in which r.=gpyi Sh is the residual for the
approximate solutio b,. The LSMR improves the solution of direct leagiare method by using both
iterative technique andbidiagonalization process. In particular, when the sensitivity matrix is
approximately obtained or constituted as a rectangular matrix with singlilssvelose to zero, the
LSMR is more influential and more reliable than the direct techniques.

d) Damage detection by Regularized Le&&gtuare Minimal Residual (RLSMR) method with incomplete
noisy modal data

The leastsquare problems such as LSMR and LS@®R other methods related to this problem are
generally ilkconditioned and require some regularization. This means that in a huge number of dynamic
systems, small perturbations such as presence of noise in the modal data and inaccurate structural
modelirg may lead to great unrealistic errors. Moreover, the direct inverse solutions for the damage
equation usually yield poor results since the errors in modal data measurements may be greatly amplified
due to the nature of iposed problems. Thus, regulativa methods are needed to filter out the influence
of noise on the measured modal data. The two most currently used regularization approaches are truncated
singular value decomposition (TSVD) and Tikhonov regularization method (TR@B0]. These
methods improve the conditions of linear problem and therefore lead to a reliable numerical solution.
Although from a theoretical point of view both methods are amilikhonov regularization may be more
useful in the variational form. Hence, in the present study, the objective function of Tikhonov method is
adopted to redefine the linear leaguares problem as minimization of Tikhonov objective function as
follows:

I(b)=lsb - & o ()

where, Jndicates the Euclidean norm. The Tikhonov objective function consists of two parts including
the residual norm and the solution norm. Indeed, the upper objective function is constructed by adding an
additional norm to the traditional leasjuare minnization technique. This added norm is known as the
solution norm b which is adjusted by a regularization parameter call&inced depends on the size of
perturbation in data, selection of the regularization parameter is a crucial step in the za@mndari
methods. Moreover, for regularized solution of Eq. (45), the optimal regularization parameter should be
estimated to obtain a meaningful amount for the unknown quantity (damage severity). There are two
popular methods including -turve method (LCM)and generalized cross validation (GCV) for
determining the regularization parame{&1-33]. In the generalized cross validation, the optimal
regularization paraeter is calculated as the parameter that leads to minimal average prediction error for
all omitted data points. In fact, GCV is utilized to maximize the predictability of regularized solution by
appropriate setting of the regularization parameter. Heheageneralized cross validation is adopted here

and can be defined as:
2
A - |
Calias- o (46)

g%n)trace(l - Ag) g

wheremis the number of quantities obtained from measurements (frequencies and mode shapes), and

GCV (g)=
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-1
A,=S(Ssy) & (47)

The expressiorirace(FA/) in the denominator is readily determined by truncated singular value
decomposition30]. It should be noted that # is too small,then the objective function of Tikhonov
regularization will be too close to the originatdibnditioned problem. In addition, dfis extremely large,
the Eqg. (45) will greatly deviate from original problem. After choosing the optimal regularization
paraneter, Eq. (45) is expanded to directly obtain the damage unknown parameter.

J(b)= D" P 20S yDHE Sbg bt (48)

According to Eq. (48), it can be seen that the Tikhonov regularization method is a direct approach.
Since the sensitivity matricesearectangular matrices and some of their singular values are about zero, the
direct method and pseudaverse techniques have unreliable computational error in the damage detection
process. Thus, a new iterative method based on LSMR algorithm nd&tegiylaized LeastSquare
Minimal Residual (RLSMR) methods i ntroduced to expand Tikhonovds
more trustworthy results in comparison with the case of direct method. Accordingly, the minimization
term of Eq. (48) can be rewritten falows:

as o6 Dy
&, B= (f (49)
g -
To determine the unknown quantliythe above equation should be minimized as:
2
o S ~
min Se 8 by (50)
o = &,
Assuming that:
- _as
S=x (51)
col
and
Ay
y _9 0 (52)

Therefore, the damage parametercan be calculated in thE" iterative step by applying the
conditionmin|[S™ T |, wheref, =y Shis the residual for the regularized problem. By using

bidiagonalization process of LSMR algorithms, it can be written:
b, =V, Z, (53)

where V_k and Z, are determined by Egs. (38)2) in a similar way. The only difference is that
expressiorS andy should be replaced witl$ and qpy Although the proposed RLSMR algorithm is
potentially able to solve the most-dbnditioned problems, the precision of this method is dependent on
the regularization parameter. In fact, the main difference between LSMR and RLSMR methods lies in the
regularzation coefficient. Thus, choosing the regularization parameters plays an important role in ill
conditioned problems.

e) Noisy measurement
In experimental modal tests, there may be some deviations in the results due to the existence of noise
in measuremda. In the numerical examples, this noise is simulated by adding a series of-Essimio
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values to the theoretically calculated frequencies and mode sfizfedn other words, due to the
complexity of the measurement process, an amount of noise may be inserted in measured data which
contaminates the modal data. Thus, in order to investigate the effect of noise on the results obtained by the
proposed damagdetection method a random noise is considered as follows:

Jji= i@+ ¢

wher e

u*

a

nd (0

ar e

t he

mo d e

shape

(54)

Wis a réndoann d

Wi

t hou

number. In this study, two values equal to 1% and 5% are applied to mode shapes and natural frequencies
as proportional random noises.

a) A six-story shear building

3. APPLICATION

To investigate the effectiveness of proposed damage detection algorithmsstarysighear building is
considered as shown in Fig. 1. Formulation of discrete systems is carried out in order to generate mass and
stiffness matrices fathis shear building35]. It is assumed that the slabs are confined amongstshaaain
behave as rigid body; hence, the stiffness of each story is computed summing the stiffness of columns.
Furthermore, the mass of each story is calculated summing half of the weight of top and bottom walls as
well as the slab weight. After determinitige structure's properties, natural frequencies and mode shapes

of the shear building are calculated through the generalized eigenvalue problem. In practice, it is not
possible or sometimes not necessary to identify all of the vibrational modes. Thutrealpf the first
calculated mode shapes and natural frequencies are used. The initial physical properties of the shear

building are presented in Table 1.

Tablel. Physical properties of the sstory shear building

August2015

Fig. 1.

! 5.0m

—2.5m !

a)

4.0m—|

b)

Physical Propeies Story 1 Story 2 Story 3 Story 4 Story 5 Story 6
Mass (Ton) 10 10 10 8 8 6

Stiffness (Ton/m) 125 125 111 95 95 83

T A M6 7

i
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}*

5
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1
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|
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a) Fullscale shear building frame, b) Simulated shear building frame
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To evaluate the effectiveness proposed structural damage diagnosis methods, several damage
scenarios are considered by imposing reduction factors on the stiffness matrix of the shear building.
Specifications of these scenarios are summarized in Table 2.

Table2. Damages in the sistory shear building

Damage
Case Number Story no. Stiffness reduction (%)
1

-40%
-30%
-20%
-15%
-10%
-20%

AWIOOON|F

2
3
4

The induced damages change the structural properties of the shear building and therefore dynamic
responses of structure will be altered. These alterations may be indicated by adverse changes of mode
shapes or decrease of natural frequencies. However, these changes do not yield precise information for
identifying the damage location or detecting ieat. Thus, detection of multiple damage cases is usually
carried out by the sensitivity analysis derived from the analytical model of the structure. In this paper, the
sensitivity matrices are composed of the fosier derivative of the modal parametevith respect to
each damage variable. As a result, the iterative least square minimal residual method is used to detect the
induced damages in the shear building. Initially, the quantities of induced damages are determined by
LSMR when the modal data am®t contaminated by noise. Next, the regularized least square minimal
residual technique is used and the damage extents are calculated in an iterative manner when incomplete

modal data are contaminated. Figuresd2ilustrate the damages predicted ihddmage scenarios by
LSMR.
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Fig. 2. Damage quantification in the shear building by LSMR in all damage scenarios
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As results show, the LSMR potentially enables detecting induced damages by the proposed
sensitivity matrices despite incompleteness of modal data. It is obvious that the afxtengosed
damages have beereciselydetermined and almost no computational error is observed. The main reasons
for the high accuracy of this method for damage quantification lies in using iterative steps instead of direct
methods and also unique projyeof LSMR. Therefore, the iterative LSMR method is a reliable tool for
detecting the structural damage in the case of incomplete modal data. It should be noted that the LSMR
has got a preferable capability in solving linear equationsSilke= éprthe complex structures with a
large number of degrees of freedom. In other words, the LSMR can accurately solve the linear equation by
the iterative algorithm even in the cases wh&rés a rectangular matrix with a large number of
coefficients @ the most measured data are incomplete. Furthermore, the number of iterative steps depends
on the precision and dimensions of sensitivity matrices. Provided that the accuracy of the sensitivity
matrices is higher and their condition number is smalleswef number of iterative steps is required.

Because the great importance of sensitivity functions in the damage quantification process, the
accuracy of these functions should be verified by investigating the relative error values. In this regard, four
sersitivity equations including the proposed sensitivity of natural frequency (PSNF) by Eq. (25), the
classical sensitivity of natural frequency (CSNF) presented in Eg. (1), improved sensitivity of mode shape
(ISMS) by Eqg. (36) and sensitivity of mode shajamed by the modal method (SMSM) introduced
through Eq. (26) are used. Relative error is evaluated through computing the ratio of amounts of induced
and computed damages in all damage scenaties the first three and the whole of measured modes are
present, respectivelyAccordingly, LSMR is used as the reference method and different damage extents
are computed by mentioned sensitivity functions. Figurels, 2kepict the relative error for the first three
modes and all modes that is the ratio of am®ofiinduced and predicted damages in the shear building.
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Fig. 3. The values of relative errors between sensitivity functions in the shear building,
a) the first three modes, b) all modes
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As can be seen from Figs.-Bathe vales of relative errors of PSNF and ISMS are negligible and
approximately close to zero when all modes are present. Thus, it can be concluded that these sensitivity
equations have been precisely formulated. In contrast, equations of CSNF and SMSM leaiti¢vaine
amounts of error in spite of wetikganized LSMR being utilized. Thus, these sensitivity functions are not
appropriate criteria for damage detection process patrticularly when incomplete measured modes are
present. It should be kept in mind thaBNF is a simple sensitivity method of poor performance
particularly in the complex structures under low damage patterns conditions. Furthermore, the relative
errors show that SMSM may deviate from exact results in complex structures and thus requires some
modifications.

After determining the damage extents by ndiee data, the measured modal data are polluted by
some random noises including 1% and 5%, respectively. Subsequently, the optimal regularization
parametep is calculated by generalized cross validation (GCV) in each damage scenario. Eventually, the
damage extentis, will be determined by RLSMR in several iterations. The results of damage detection
process in the shear building in the case of noisyataaresented in Figs.-4.
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As shown in Figs. 4, the extent of induced damages is calculated by RLSMR with a good precision
even when noise pollutes the modal data. In other words, obtained réswtshsit in cases of multiple
damages and despite incompleteness of measured raou®stof computational error is negligible and
can be neglected. In fact, these results obviously indicate the high capability of RLSMR in the case of ill
conditioned prolems. It is clear that the proposed sensitivity functions perform well in the case of noise
free data and therefore, combining these functions with optimal regularization parameter in matrix
S ,improves the results of damage quaodifion. Hence, it is obvious that the LSMR is not directly able
to attain these accurate results and the optimal regularization parameter should be precisely determined.
The advantage and applicability of GCV has been verified by many resedi@$e33]. Consequently,
the proposed method of RLSMR can be introduced as an influential and precise algorithm instead of using
other direct regularization methods such as Tikhonov regulanzatiethod and singular value
decomposition. Moreoverthere are damage extents predicted in undamaged members of the shear
building. This may be caused by complexity in the calculation of sensitivity matrices, existence of noise in
data and also modal dataing incomplete. However, as will be shown later, this error is insignificant and
does not have any important effect on damage quantification algorithm.

b) A planner truss

In order to investigate the damage detection algorithms further -ditmensionatruss is considered
as shown in Fig. .8Basic characteristics of the structure include Young modulus E=200 GPa and density
} =7 85 0. Ak meimbers of the truss are modeled ashiaped double equal angles of 100 mm width
and 5 mm thickness. Each node of the truss has two degrees of free@&M IfDthis example, the first
five vibration modes of the structure are used to simulate incompleteness condition for modal parameters.
Two types of random noises including 1% and 5% are imposed on the extracted mode shapes and natural
frequencies, respévely.

D8 D10 D12 D14

k 4at3m I

Fig. 8. The planner truss considered as continuous dynamic system

This 2D truss is a continuous dynamic system and its mass and stiffness matrices can be determined
by basic concepts of finite element metfj88]. After calculating the physical properties of undamaged
truss, generalized eigenvalue problem is used to identify modal data. It is assumed that proportional
damping dominates st r ucimhadal padasnetebseahcaextiacted asareaddatd. h u s
Subsequently, four damage cases are considered to investigate effectiveness of proposed methods for
damage detection. The damage scenarios and their corresponding inflicted damage are summarized in
Table 3.

Table 3. Damages in the planner truss

Damage
Casenumber Element no. Stifiness reduction (%)
1 2 -20%
14 -20%
6 -10%
2 9 -15%
12 -15%
1 -30%
3 8 -30%
15 -25%
4 7 -20%
13 -40%
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These induced damages are imposed ontrilss's stiffness matrix and modal data of damaged
structures are identified by generalized eigenvalue problem, one time more. In the previous section, the
accuracy of the proposed sensitivity functions was verified by LSMR when only a limited number of
modes are available. This result is definitely valid for the continuous systems such as planner truss.
Indeed, the merit of sensitivity functions lies in the superiority, correctness and applicability of sensitivity
formulations. Thus, type of dynamic systédiscrete or continuous) and its properties does not effect on
the accuracy of these functions. After determining the sensitivity matrices, the extent of induced damages

are computed by LSMR in the several iterations. Results of structural damage ididognbSMR in all
damage scenarios are shown in Figsd9a
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Fig. 9. Damage quantification in the planner truss by LSMR in all damage scenarios

It is clear from the results that the damage extents are accurately determined by LSMR. Barticular
in the cases of low damage (less than 15%), the results of damage quantification by PSNF have been
precisely estimated. It should be noted that damage detection in the planner truss has been performed as
local damages. As mentioned before, one of thaddiantages of natural frequency lies in its disability to
detect the local damage. Hence, the above figures clearly indicate to the accuracy of damage
quantification resultslt can be concluded that the PSNF can entirely deal with the disability ofhatur
frequency for determining local damages and also damages of low extent. Moreover, ISMS method
provides proper results in both cases of low and high damage extents. In addition, the computational errors
present in the results of PSNF and ISMS are alith@ssame and so it can be concluded that LSMR and
the proposed sensitivity functions are powerful methods for structural damage diagnosis. In order to allow
a more ready comparison of the results obtained by the sensitivity functions, Figgssi®a theelative

error (difference between the predicted damage extents and induced damages) when the first five and the
whole of measured modes are present, respectively.
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Fig. 10. The values of relative errors betan sensitivity functions in the planner truss

By comparing the results obtained using sensitivity functions in Figsb,ldaan be observed that
the ISMS and PSNF have better results than other sensitivity functions in any condition of measured
modes.As shown in Fig 1€, in the case of incompleteness of measured modes, the amounts of relative
errors in CSNF are unreliable and also SMSM have considerable errors. On the other hand, when all of the
vibration modes are measured the SMSM performs bettepnmparison with the case of incomplete
measured modes. In such circumstance, increasing the number of the measured modes leads to decrease in
the amount of relative error in SMSM whereas both PSNF and ISMS have negligible error. Moreover, it is
clear fromFig. 10b, that PSNF and ISMS are again more accurate than SMSM and CSNF when all of the
modes are measured.

To detect the induced damage extents in the case of contaminated data, 1% and 5% random noises are
imposed on the identified modal data in thext step. Once again, the generalized cross validation is
performed by determining the regularization parameter at all scenarios. Figs illlistrate the structural
damage extents in the case of incomplete noisy modal data.

a) Damage scenarib, truss b) Damage scenarib, truss

Fig. 11. Damage quantification in the planner truss by RLSMR, damage scenario 1,
a) 1% noisy data, b) 5% noisy data

a) Damage scenarid, truss b) Damage scenar@d truss
Fig. 12. Damage quantification in the planner truss by RLSMR, damage scenario 2,
a) 1% noisy data, b) 5% noisy data
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