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Abstract– This paper focuses on the design point and the failure probability of problems with 
continuous random variables. The charged system search (CSS) algorithm is utilized as the 
optimization tool to achieve minimum reliability index under limit state function. In order to 
acquire the optimal solution, random variables such as elastic modulus, loads, and geometric 
parameters are selected as decision variables of the problem which are optimized by means of the 
CSS algorithm. This algorithm is inspired by the Coulomb and Gauss’s laws of electrostatics from 
physics. In order to evaluate the accuracy and efficiency of this algorithm, several numerical 
examples are studied and the results are compared to those of the existing methods. 
The proposed method is capable of finding a design point over the failure surface and calculates 
the reliability index with a reasonable accurately. As the proposed framework enforces low 
computational time and holds a satisfactory convergence rate, it is a competent methodology to 
calculate different types of reliability problems.           

 
Keywords– Structural reliability, optimization, charged system search, limit state function, failure probability, 
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1. INTRODUCTION 
 

The well-known reliability analysis refers to the measurement of structural failure probability calculating 
the limit state functions to identify satisfaction or dissatisfaction of the imposed limitation. In order to 
perform the reliability analysis of structures, statements such as safety as well as failure probability, which 
are the complement of reliability, have to be considered. Firstly, we define a limit state function that is 
compulsory to the abovementioned definitions. While a structure or part of a structure go out of limitation, 
structure cannot perform their responsibilities, and this specific section is named “a limit state”. In the 
process of increasing the limit state to an expected value, it will be considered as an unreliable structure. 

Generally, the methods of probability analysis for the sake of structural reliability can be divided into 
three main categories: 

- The moment methods, say first and second-order reliability methods [1, 2]. 
- The sampling methods with the important ones being the Monte Carlo simulation and importance 

sampling [2, 3]. 
- The optimization methods which will be computed by the meta-heuristic algorithms [4, 5]. 
Although the utilization of moment methods are simple, the precision of these methods to compute 

large issues and small values of failure probability or non-linear limit state functions is unsatisfactory. 
Besides, the sampling methods enforce excessive computational time to calculate the failure probability. 
In sampling methods such as Monte Carlo Simulation (MCS), the state-limit function can be calculated 
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using the random samples generated via probability distribution function (PDF) of each uncertain variable. 
Consequently, the failure probability can be acquired by dividing the number of samples which will result 
in a negative value for limit-state function over the total number of samples. Even though the well-known 
MCS methodology is able to identify the global optimum solution without demanding the analytical 
formulation of limit-state function, this solution approach necessitates a large number of simulations 
which will result in an excessive computational time. Heuristic algorithms have found many applications 
in optimization problems in the last decade. The essence of these algorithms lies in the fact that their 
capability to converge to a good solution does not depend on the specific search space to which they are 
applied. The objective function of these solution techniques is the minimum distance of limit-state 
function from the origin of standard normalized coordinate system. 

Recently, a sampling-based methodology is introduced to identify the optimal structures by Alvarez 
and Hurtado [6]. In [7], the well-known particle swarm optimization technique is employed to determine 
the optimal design of a ten-bar truss based on a reliability criterion. Reliability-based Design Optimization 
using Response Surfaces Method is investigated in [8], and structural uncertainties in dynamic behavior 
prediction of piping systems are studied in [9]. As a new meta-heuristic approach, this article utilizes 
charged system search algorithm (CSS) for determining structural reliability. The CSS is a population 
based meta-heuristic optimization algorithm which has been proposed recently by Kaveh and Talatahari 
[10]. In the CSS, each solution candidate is considered as a charged sphere called a Charged Particle (CP). 
The electrical load of a CP is determined considering its fitness. Each CP exerts an electrical force on all 
the others according to the Coulomb and Gauss laws from electrostatics. Then the new positions of all the 
CPs are calculated utilizing Newtonian mechanics, based on the acceleration produced by the electrical 
force, the previous velocity, and the previous position of each CP. Many different structural optimization 
problems have been successfully solved by the CSS. 

In this paper, after a brief presentation of the concepts of structural reliability, a concise background 
of the CSS is provided. Numerical examples are studied to show the efficiency and accuracy of the 
proposed method. Finally, the paper is concluded by some remarks. 
 

2. STRUCTURAL RELIABILITY 
 
Concept of limit state that is used for definition of the failure in reliability analysis, is the boundary 
between a suitable and unsuitable performance. If limit state function becomes zero or 0)g( X , limit-
state surface, the boundary between the two domains (safe and failure) is conventionally defined. Also, 

0)g( X  defines the safety domain and 0)g( X  defines the failure domain. 
 
a) The Cornell reliability index 

 
In First Order Second Moment Methodology (FOSM), the expectation value (i.e. first moment) and 

the variance (i.e. second moment) of input parameters can be used to deal with the uncertain nature of 
reliability calculations. To employ the FOSM methodology efficiently, the total number of basic variables 
should be limited. Also, the failure or the success of basic variables should be known. The Cornell 
reliability index can be written as follows [1, 2]: 

 
 gVar

gE
β   (1)

where, E[g] and Var[g] stand for the mean value and the variance of safety margin, respectively. In the 
basic formulation of Cornell, the failure function can be calculated as follows: 

  SRSR,g   (2)
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Where R represents the resistance of structure and S represents the effect of burden. For uncorrelated R 
and S, the above mentioned reliability index can be rewritten as follows: 

   
    2

S
2
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b) The Hasofer-Lind’s reliability index:  

According to Hasofer-Lind’s definition, the reliability index is equal to the distance between the 
origin and the closest point to the origin in the limit-state surface [11]. This point is the most probable 
failure point (MMP or MPFP) and is called the design point holding the maximum of the probability 
density. Given the large number of basic variables, Hasofer and Lind propose to convert the original basic 
variables (i.e., X) into the standard normalized variables (i.e., Z) following normal probability distribution 
when the mean value and the standard deviation is equal to zero and one, respectively. In the standard 
normalized space, the distance between each point of the failure surface and the origin of the coordinate 
system is the same as the distance between a point over the failure surface and the mean point in the 
unmapped coordinate system. Consequently, the distance between every point of the failure surface and 
the origin of standard normalized coordinate system is equal to the reliability index in the direction 
connecting the arbitrary point to the origin of the system coordinate. As defined by Hasofer and Lind, the 
minimum distance between the failure surface and the origin of standard normalized coordinate system 
designated as design point (DP) represents the reliability index of the entire structure. In the method of 
Hasofer-Lind, the uncertain variables follow the normalized standard probability distribution. Besides, 
Rackwitz and Fiessler present a well designed framework which is capable of converting the non-normal 
probability distribution function into the normal variables. By substituting the probability density function 
and cumulative distribution function with the equivalent normal distribution in the design point, the mean 
and standard deviation can be expressed as follows [12, 13]: 

   
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Converting the design point on each step, the mean and standard deviation of the equivalent normal 

standard will also be converted. 
Considering the aforementioned definitions, the procedure of calculating the reliability index can be 

treated as an optimization problem. In other words, the objective function is supposed to determine the 
coordinates of a specific point on failure surface which is closest to the origin in the U space. The 
mathematical form is as follows: 

   
  0uG:toSubject

uuuβ:minimizeto

Uu

]u,...,u,[uufind
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




 (6)

where iu is the decision variables which should be selected from Standard Gaussian Space U. 
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The probability of failure, fP , is equal to probability of bad performance. When all variables have 
independent normal distribution and limit state is linearized function of the variables, then the failure 
probability can be computed from [4]:  
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 (7)

 
where Φ(β)  is a cumulative distribution function and β is the safety index or reliability index. 

A formidable task in an n-dimensional reliability theory of structure is to calculate the probabilistic 
multiple integration as [2, 4]:  

 


0G(X)f f(X)dX0]Prob[G(X)P  (8)

where, Pf stands for the failure probability and G(X) represents the state-limit function. X is a random 
vector representing the parameters of a stochastic structure and following a joint probability distribution 
function demonstrated by f(X). Also, the domain of the integration is G(X)<0. As finding the accurate 
value of Pf is almost impossible, prior investigations have introduced several approaches for calculating 
the approximate value of Pf . This paper presents a new competent approach calculating the failure 
probability as well as the design point.  
 

3. OPTIMIZATION ALGORITHM 
 
The Charged System Search contains a number of Charged Particle (CP) where each one is treated as a 
charged sphere and can insert an electric force to the others. The magnitude of this force for a CP located  
inside the sphere is proportional to the separation distance between the CPs, and for a CP located outside 
the sphere is inversely proportional to the square of the separation distance between the particles. The 
resultant forces persuade the CPs to move towards new locations according the motion laws of Newtonian 
mechanics. In the new positions, the magnitude and the direction of the forces are reformed and this 
successive action is repeated until a terminating condition is satisfied. Many different structural 
optimization problems have been successfully solved by the CSS [14, 15].  The pseudo-code for the CSS 
algorithm is summarized in the following: 
 
Level 1: Initialization 

 Step 1: Initialization. The magnitude of charge for each CP is defined as 

fitworstfitbest

fitworstfit(i)
qi 


   N1,2,...,i   (9)

where fitbest and fitworst are the best and the worst fitness of all the particles; fit(i) represents the 
fitness of the agent i; and N is the total number of CPs. The separation distance rij between two 
charged particles is defined as follows: 

       
ε||X)/2X(X||

||XX||
r

bestji

ji
ij 


  (10)

 
where Xi and Xj are the positions of the ith and jth CPs, respectively, Xbest is the position of the best 
current CP, and   is a small positive number. The initial positions of CPs are determined randomly.  
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 Step 2: CP ranking. Considering the values of the fitness function, sort the CPs in an increasing 
order. 

 Step 3: CM creation. Store a number of the first CPs and the values of their corresponding fitness 
functions in the Charged Memory (CM). 

 
Level 2: Search 

 Step 1: The probability of moving determination. Determine the probability of moving each CP 
toward the others using the following probability function: 
 




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

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                                                otherwise      0 

fit(i)fit(j)rand
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fitbestfit(i)
      1

pij  (11)

 Step 2: Forces determination. Calculate the resultant force vector for each CP as 
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where Fj is the resultant force acting on the  jth CP. arij is a new parameter, the so-called kind of 
force and determines the type of the force, where +1 represents for the attractive force and −1 
denotes for the repelling force and is defined as  


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     k  w.p.
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where “w.p.” stands for “with the probability”. 
In this algorithm, each CP is considered as a charged sphere with radius a, which has a uniform 
volume charge density.  

 Step 3: Solution construction. Move each CP to the new position and find the velocities as 

               
oldj,oldj,vj2

2

j

j
aj1newj, XΔtVkrandΔt

m

F
krandX   (14)

                            Δt

XX
V oldj,newj,

newj,


  (15)

where ka and kv are the acceleration and the velocity coefficients, respectively which can be 
obtained as follow; and randj1 and randj2 are two random numbers uniformly distributed in the 
range [0..1].  

                      )iter/iter0.5(1k maxa  , )iter/iter0.5(1k maxv   (16)

 Step 4: CP position correction. If a CP swerves off the predefined bounds, correct its position 
using the harmony search-based handling approach as described in Kaveh and Talatahari [16]. 
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 Step 5: CP ranking. Considering the values of the fitness function, sort the CPs in an ascending 
order. 

 Step 6: CM updating. Include the better new vectors in the CM and exclude the worst ones from 
the CM. 

 
Level 3: Terminating criterion controlling 

Repeat the search level steps until a terminating criterion is satisfied. Figure 1 shows the flowchart of the 

CSS algorithm. 
 

 
Fig. 1. The flowchart of the CSS algorithm 

 
4. NUMERICAL EXAMPLES 

 
In order to show the accuracy and efficiency of the proposed algorithm, in this section several problems 

are solved from literature and the results are compared. For the examples presented in this paper, the CSS 

algorithm parameters are set as follows: the number of agents is taken as 4×N where N is the number of 

design variables of problem, the maximum number of iterations is set to 200. The algorithms are coded in 

MATLAB and in order to handle the constraints, a penalty approach is utilized. If the constraints are 

between allowable limits, the penalty is zero; otherwise the amount of penalty is obtained by dividing the 

violation of allowable limit to the limit itself. 

Example 1. In this example, a number of benchmark functions chosen from references are optimized 
using the CSS and the results are compared. The description of these test problems is provided in Table 1.  
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        Table 1. Comparison of results obtained for the proposed algorithm (using CSS) by different methods 

 
 
Example 2. The structure studied in this example is a cantilever beam with rectangular cross-section and 
is subjected to a concentrated load at the end of beam, as shown in Fig. 2. Limit state function in this 
example is given by Eq. (17). Variables yF and Z  are normal variables with mean and standard deviations 
(Fy: 0.32, 0.032) kN/mm2 and (Z: 1400 103, 70 103) mm3, respectively. The variable P is the lognormal 
variable with mean value equal to 100 kN and standard deviation 40 kN. Length of the beam is constant 
with L=2 m. In Table 2, the optimal design point obtained by the CSS is compared to those of the previous 
works. 

                      
  PLZFXG y    (17)

The state-limit function is relatively linear and the results of our proposed methodology are similar to 
those of the previous investigators. The convergence history of CSS is illustrated in Fig. 3. 
 

Table 2. Comparison of results obtained for CSS (proposed algorithm) by different methods 

Method 
Design point in 
standard normal space 

Design point in 
basic space 

β Pf 

 [2] Page 200 U*=(-0.264,-0.126,-0.956) x*=(0.3149, 1.381×106, 208.2) 2.192 0.0142 

CSS (proposed 
algorithm) 

U*=(-0.57728,-0.27578, 
2.09560) 

x*=(0.30152,1.38069×106, 
208.15846) 

2.19109 0.01422 

 

 
Fig. 2. Cantilever beam of Example 2 
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Fig. 3. Convergence history of the CSS for Example 2 

Example 3. The structure studied in this example is a beam as shown in Fig. 4. Limit state on the 
displacement is given by Eq. (18) which is simplified to limit state function (19). Variables E and I are 
normal variables with mean and standard deviation (E: 2 107, 0.5 107) kN/m2 and (I: 10-4, 0.2 10-4) 
mm4, respectively. Variable P is extreme value distribution type-I variable with mean 4 kN and standard 
deviation 1 kN. L is deterministic parameter that equals L=5 m. In Table 3, the optimal design point 
obtained by the CSS is compared to those of the previous works. 

   
max

3

d
30

L

EI48

PL5
d   (18) 

       P12.78EIXG  (19) 

The state-limit function is relatively linear and the results of our proposed methodology are similar to 
those of the previous investigators. The convergence history of CSS is illustrated in Fig. 5. 

 
Fig. 4. Beam of Example 3 
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Fig. 5. Convergence history of the CSS for Example 3 
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Table 3. Comparison of results obtained for CSS (proposed algorithm) by different methods 

Method 
Design point in 
standard normal space

Design point in 
basic space

β Pf 

 [4] Page 104 
U*=(-3.202,-0.5914, 
0.659) 

x*=(3.9897×106, 0.8817×10-4, 
4.5035) 

3.3222 4.4655×10-4 

CSS (proposed 
algorithm) 

U*=(-3.2084,-0.57378, 
0.6425) 

x*=(3.95785×106, 0.88524×10-4, 
4.48497)

3.32207 4.46759×10-4

 
5. CONCLUSION 

 
The CSS algorithm is very efficient in solving global optimization problems with continuous variables. 
Regarding the reliability evaluation of structures, the CSS is capable of finding the optimal design point as 
well as the failure probability corresponding to the MMP. Simulation results demonstrate the failure 
probability may be overestimated, meaning a wasteful and inefficient design, when the reliability index is 
less than its real value. In contrast, the failure probability may be underestimated when the reliability 
index is more than its real value. In the case of valuable and large structures, a small change in the 
calculated reliability index will result in a large change in the calculated value of the failure probability. 
Our proposed approach is capable of finding a design point over the failure surface and calculates the 
reliability index accurately. As the proposed framework enforces low computational time and holds a 
satisfactory convergence rate, it is a competent methodology to tackle different types of reliability 
problems. 
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