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Abstract– Seismic coefficient values coupled with minimum pseudo-static safety factors are still 
used for analysis where selection of seismic coefficients relies on expertise and judgment. 
However, safety factor approach does not give any idea about the deformations and displacements 
that are expected to occur during earthquake loading. Displacements are mostly evaluated by 
equations based on yield acceleration of the slope and maximum acceleration of sliding mass. The 
method based on rigid block gives co-seismic permanent slope deformation when its factor of 
safety equals 1.0, hence, there is a need to link slope displacements, seismic coefficients and 
pseudo-static safety factors. This will enable the designers to predict slope displacements based on 
selected seismic coefficients. In the present paper, slope displacements obtained for different peak 
ground accelerations and safety factors are used to propose charts linking co-seismic slope 
displacements (D), seismic coefficients (݇) and pseudo-static safety factors (FS), which are 
important parameters in pseudo-static approach. This enables the ݇ values to be chosen based on 
allowable displacements instead of using judgment and expertise. Results show that ݇ values for 
any allowable displacement should be based on anticipated PGA and FS values. Subsequently, 
slope displacements are utilized in developing a novel displacement-based methodology to select 
the seismic coefficient which will be used to calculate the pseudo-static safety factor.           
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1. INTRODUCTION 
 

Slope failures are often observed following large earthquakes. Because of their effects on infrastructure 
facilities such as buildings, bridges, roads and lifelines, they have a significant impact on casualties and 
economic losses. As a result, evaluation of the stability of slopes has become an important part of 
geotechnical earthquake engineering. Several approaches for evaluation of seismic slope stability, ranging 
from simple to complex, are available and can be divided into: 1) pseudo-static methods, 2) sliding block 
methods, and 3) stress-deformation methods [1]. 

The performance of earth structures subjected to seismic action can be evaluated through force-based 
pseudo-static methods, displacement-based sliding block methods, non-linear soil behavior and fully 
coupled effective stress numerical analyses. In principle, numerical methods allow the most 
comprehensive analyses of the response of earth structures to seismic loading. However, reliable 
numerical analyses require accurate evaluation of soil profile, initial stress state, stress history, pore water 
pressure conditions, strength and deformation characteristics of the selected soil layers. Moreover, cyclic 
soil behavior can be properly described using advanced constitutive models developed within the 
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framework of bounding surface plasticity or kinematic hardening plasticity, which requires input 
parameters that are not usually measured in field or laboratory testing. 

For slope stability analysis, limit equilibrium method (LEM) is widely used by engineers and 
researchers which is a traditional and well-established method. Although the LEM does not consider the 
stress–strain relations of the soil, it can provide an estimate of the safety factor without requiring the initial 
conditions. For this reason, the method is favored by engineers. LEM is known to be a statically 
indeterminate method which requires assumptions on the distributions of internal forces for evaluation of 
the safety factor. 

The displacement-based approach provides a compromise between the rather inadequate pseudo-
static approach and the more refined numerical analyses; indeed, it has the advantage of giving a 
quantitative assessment of the earthquake-induced displacements using a rather simple analytical 
procedure. Prediction of earthquake-triggered landslide displacements is important for the design of 
engineered slopes seismic hazard analysis as well as for co-seismic landslide analysis. The earthquake 
acceleration needed to reduce the factor of safety to 1.0 is called the yield or critical acceleration. This 
procedure is simple and requires no more information than what is needed for a static factor-of-safety 
analysis. 

A common approach to using pseudo static analysis is to iteratively conduct a limit-equilibrium 
analysis using different values of k until FS=1. The resulting pseudo-static coefficient is called the yield 
coefficient,	݇௬. As mentioned above, the conventional methods used for evaluating the performance of 
slopes under seismic loading includes application of a seismic coefficient to calculate the pseudo-static 
safety factor and calculation of permanent displacements. These approaches employ pseudo-static limit 
equilibrium analysis. Until the 1960s, engineers employed a seismic coefficient to assess the safety factor 
of slopes and embankments. In the current state of the art, seismic coefficient values coupled with 
minimum pseudo-static safety factors are used in the analyses, where the selected seismic coefficients rely 
on expertise and judgment. However, safety factor approach does not provide any information about 
deformations that are expected to occur during earthquake loading. Deformation is a better indicator of 
slope performance and therefore, seismic slope stability is evaluated more and more frequently based on 
the permanent deformations rather than the safety factor criterion. In this context, Newmark’s [2] sliding 
block model is a widely used tool for calculating permanent slope displacements.  

Displacements are mostly calculated by equations based on yield (݇௬) for rigid slopes. The materials 
that comprise slopes are compliant and respond dynamically as deformable bodies to ground motions. As 
the motion propagates, different parts of the slope move by different amounts and different phases, 
thereby creating a distribution of accelerations throughout the slope that vary in space and time. These 
accelerations induce inertial forces, that when superimposed on the self-weight of the soil mass, 
destabilize the slope. Therefore, slope displacements are calculated by equations based on maximum 
equivalent accelerations (k௫). Where, k௫	represents the peak value of the HEA time history and 
represents a spatial average of the accelerations acting on the slide mass. The dynamic response analysis is 
then performed to quantify the accelerations experienced by the slide mass and is expressed as Horizontal 
Equivalent Acceleration or HEA time history. 

Based on the above arguments, to predict slope displacements based on selected seismic coefficients, 
there is a need to link slope displacements, seismic coefficients and pseudo static safety factors. This will 
enable the designers to predict slope displacements based on selected seismic coefficients. Following a 
review of the literature on different methods used in seismic slope stability problems, a methodology is 
proposed to link the permanent slope displacements, seismic coefficients, and pseudo-static safety factors. 

In order to facilitate more relations between LEM and sliding block methods, the following activities 
were conducted in the present paper:   
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1- Determination of horizontal acceleration effects on slope (based on various limit equilibrium 
procedures including Bishop's method). 
2- Determination of earth slope's factor of safety under effects of imposed seismic horizontal acceleration. 
3- Determination of slope yield acceleration coefficient (variation in slope yield acceleration coefficient, 
where factor of safety is required to become equal 1).  
4- Determination of co-seismic permanent slope deformation (based on various rigid block methods). 
 

2. BACKGROUND 
 
The earliest methods of seismic slope stability analyses used a limit-equilibrium pseudo-static approach 
and considered stability in terms of a simple factor-of-safety. These very basic procedures evolved into 
more sophisticated deformation-based approaches during the 1960s and 1980s. Today it is common 
practice in geotechnical earthquake engineering to estimate seismically-induced displacements in slopes 
and earth structures, using one of the available deformation-based analysis procedures. Such an approach 
is appropriate as displacements ultimately govern the serviceability of a slope after an earthquake. 

Over the past 50 years, roughly 30 different deformation-based methods have been developed to 
compute seismic slope displacements. These procedures generally fall into one of three categories: (1) 
rigid block-type procedures, which ignore the dynamic response of slopes [2-4],(2) decoupled procedures, 
which account for dynamic response, but “decouple” this response from the sliding response of slopes[5-
6], and (3) coupled procedures, which “couple” the dynamic and sliding response of slopes[7]. 

In design applications, these methods are used in a predictive capacity to estimate the amount of 
earthquake-induced displacement for a design earthquake event. More detailed information is presented in 
individual sections devoted to each method. 

 
a) Pseudo-static coefficient 

 
Landslides account for a significant portion of total earthquake damage; therefore, seismic stability of 

slopes is of primary concern. As emphasized by Kramer [1], analysis of seismic stability of slopes is 
complicated by the need to consider the effects of seismic stresses, their effects on strength and stress-
strain properties of the slope materials. 

Stability analyses of earth slopes during earthquake were initiated in the early 20thcentury using what 
has come to be known as the pseudo-static method. The first known documentation of this method in the 
technical literature was proposed by Terzhagi [8]. Pseudo-static analysis, models the seismic shaking as a 
permanent body force that is added to the force-body diagram of a conventional static limit-equilibrium 
analysis. Normally, only the horizontal component of earthquake shaking is modeled because the effects 
of vertical forces tend to average out to near zero.  

Figure 1 shows the forces acting on a sliding mass of the soil above a failure surface in a pseudo 
static analysis .The magnitude of the inertial forces acting on the sliding mass, ܨandܨ௩, are calculated as 

݇୦=ܽ ݃ൗ                                                                                          (1) 

݇୴=
ܽ௩ ݃ൗ                                                                                          (2) 

Where	a and ܽ௩ are horizontal and vertical pseudo-static accelerations; ݇ and ݇௩ are dimensionless 
horizontal and vertical pseudo-static coefficients (seismic coefficients) and W is the weight per unit length 
of slope, β is the slope angle and g is the acceleration of gravity. The horizontal pseudo-static force affects 
the pseudo-static safety factor considerably, whereas the vertical pseudo-static force has been shown to be 
completely insignificant and therefore it can be neglected. In this context, the pseudo-static factor of safety 
(FS) is calculated as: 
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Table 1. Pseudo-static coefficients from various studies 
 

Investigator Recommended Pseudo 
static Coefficient 

 (k) 

Recommended factor of 
safety (FS) 

Calibration 
conditions 

Terzhagi [8] 0.1(R-F=IX) 
>1.0 Unspecified 0.2(R-F=X) 

0.5(R-F>X) 
Seed (1979) [16] 0.10(M=6.50) 

> 1.15 
<1 m          
displacement in 
                   earth dams 0.15 (M=8.25) 

Marcuson (1981) [17] 0.33-0.50 PGA/g >1.0 Unspecified 

Hynes- Griffin and 
Franklin (1984) [18]  

0.5 PGA/g >1.0 
<1 m          
displacement in 

  earth dams 
California Division Of 

Mines and Geology 
(1997) 

0.15 >1.1 
Unspecified: probably 

based on <1 m 
displacement in dams 

JCOLD Japan 0.12-0.25     
Corps of Engineering 0.1      (Major 

Earthquake) >1 
>1 

Unspecified 
  

0.15   (Great Earthquake) 
IRI Road and Railway 

Bridges Seismic 
Resistant Design Code 

NO: 463 

0.5 A >1 Unspecified 

Indian standard for 
Seismic design of earth 

0.33 Z I S  >1 Unspecified 
 
R-F             is Rossi –Forel earthquake intensity scale. 
M               is   earthquake magnitude. 
PGA           is Peak Ground Acceleration. 
G                is acceleration of gravity. 
A                is ratio of design acceleration to acceleration of gravity (0.2 to 0.35) 
Z                is zone factor (0.1 to 0.36) 
I                 importance factor (1.0 to 2.0) 
S                site amplification factor (1.0 to 2.0) 

 
b) Deformation analysis 

 
The following section includes a discussion of appropriate applications of these types of analysis. 

 
1. Stress-strain analysis: The advantage of stress-strain modeling such as Finite Element Analysis is that 
it gives the most accurate picture of what actually happens in the slope during an earthquake. Clearly, 
models that account for the complexity of spatial variability of properties and the stress-strain behavior of 
slope materials yield more reliable results. But stress-deformation modeling has also its drawbacks. The 
complex modeling is warranted only if the quantity and quality of the data merit it. 

 
2. Permanent deformation analysis: Newmark [2] introduced a method to assess the performance of 
slopes during earthquakes that bridges the gap between overly simplistic pseudo static analysis and overly 
complex stress-deformation analysis. Newmark's method models a landslide as a rigid block that slides on 
an inclined plane. The block has a known yield or critical acceleration, the acceleration being required to 
overcome basal resistance and initiating sliding (Fig. 2). 

On conceptual level, all deformation-based methods are models which are simplified approximations 
of the real physical mechanism of seismic-induced deformation in slopes. As mentioned above there are 
three fundamental models, all of them relied on deformation-based methods. These model categories 
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Newmark [2], Ambraseys and Srbulov [20], Jibson [9], Saygili and Rathje [4] used this method with 
various assumptions for calculation or co-seismic slope permanent deformation. The recommended single 
(scalar) ground motion parameter model is the "peak ground acceleration PGA, earthquake magnitude M" 
model from Saygili and Rathje [21], and the recommended two vector ground motion parameter model is 
the PGA and PGV(peak ground velocity), models from Saygili and Rathje [4]. For simplicity, these 
models will be called the SR08/RS09 models. 
 

2. Decoupled analysis 

Soon after Newmark [2] published his rigid-block method, more sophisticated analyses were developed to 
account for the fact that landslide masses are not rigid bodies, but deform internally when subjected to 
seismic shaking [22-23]. The most commonly used of such analyses was developed by Makdisi and Seed 
[5]. They produced design charts for estimating co-seismic displacements as a function of slope geometry, 
earthquake magnitude, and the ratio of yield acceleration to peak acceleration.  

In decoupled analysis, the first step is dynamic-response analysis of the slope with 1D 
programs such as EERA and SHAKE, or with 2D programs such as PLAXIS and FLAC; through 
estimating average acceleration-time history for the several points within the slope mass above 
the potential failure surface. The average acceleration has been referred to as k or HEA, the 
horizontal equivalent acceleration [6]. Peak values are generally referred to as ݇௫ or MHEA, 
the maximum horizontal equivalent acceleration. In the second step, the permanent earthquake-
induced deformation is calculated through double-integration of the HEA time history. This 
approach is referred to as a decoupled analysis. Computation of dynamic response and the plastic 
displacement are performed independently. 
 
3. Coupled analysis 

In a fully coupled analysis, the dynamic response of the sliding mass and the permanent displacement are 
modeled together so that the effect of plastic sliding displacement on the ground motions is taken into 
account. Wartman et al. [24] compared the sliding response of deformable clay masses and a rigid block 
on an included plane subjected to cyclic motion. They found that the Newmark-type rigid block analysis 
was overly conservative for cases where the tuning ratio ( ܶ௧), the ratio of the predominant frequency of 
the input motion ( ܶ) to the predominant natural frequency of the slope ( ௦ܶ) was greater than about 1.3 and 
un-conservative when ܶ௧ was in the range of 0.2–1.3 [24].  

More recently, Rathje and Bray (1999, 2000) compared results from rigid block analysis with linear 
and non-linear coupled and decoupled analyses. Many empirical models predict permanent deformation 
"D" as a function of ݇௬ and one or more ground motion parameters (e.g., PGA, Arias Intensity	ܫ, PGV, 
and mean period, ܶ). There are many available predictive models, but the most recently developed 
models are those proposed by Rathje and Antonakos [22] and Bray and Travasarou [7]. 

 
3. METHODOLOGY 

 
In methods based on the permanent deformation method, safety factor is assumed to be equal to 1. In 
pseudo-static methods based on limit states, safety factor is usually considered to be greater than 1 under 
specified pseudo-static acceleration. Developing a method to calculate the seismic deformation of an earth 
slope with a specified safety factor, would be a bridge between these two methods of analysis. In other 
words, if an earth slope is designed based on a specified horizontal pseudo static accelerations and safety 
factor, how much would the estimated earth slope deformations be? 
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e) The effect of β 
 

According to Euro Code 8, based on a simplified procedure developed by Ashford et al. [27] the 
seismic loading can be amplified for steep (>60°) slopes (i.e., ∼1.5 PGA). [27] 

 
f) Verification and example applications 

 
To illustrate the verification and application of the model for predicting the sliding displacement of 

slopes with specified safety factor, consider the following example: 
Consider two slope Models (M1 and M2) on Fig. 4, with the height of 30m from bedrock, angle of 

35° and soil unit weight of 20 kN/m3, having factor of safety (FS) equal to 1.1 and 1.0  respectively under 
horizontal acceleration of 0.139 g. Regarding the above mentioned specifications, deformation of slopes 
using the proposed Model can be determined and dynamic analysis using PLAXIS code[25] under effects 
of earthquakes can be observed in Table 3. The records are those referred to in Table 2. 

Last two columns of Table 3 illustrate the seismic slope deformations obtained from finite element 
method (PLAXIS) and predicted deformations from the proposed Model. Run time of the PLAXIS code 
for calculation of slope permanent deformation in each phase is approximately 8 hours. In this case, curves 
are able to introduce suitable provision on determination of seismic slope deformation with a given factor 
of safety under effect of a given horizontal acceleration. 

 
Table 3. Earth slopes permanent deformation 

 
Displacement 

reduction 
(Model)% 

Displacement 
reduction 

(PLAXIS)% 

U (cm) 
Model 

U(cm) 
PLAXIS 

T௦ ܶ⁄  FS ݇ ݇௬ M Model 
No. 

Record No. 

- - 78.55 97 0.65 1.0 0.139 0.139 7.4 M1 Tabas-1084L 

- - 87.59 79 0.63 1.0 0.139 0.139 7.4 M1 Tabas-1084T 

- - 17.28 22 1.03 1.0 0.139 0.139 7.7 M1 Ab bar-1362T 

- - 0.0 5.1 2.03 1.0 0.139 0.139 6.4 M1 Zanjiran-1502L 

- - 0.07 17 1.74 1.0 0.139 0.139 6.4 M1 Zanjiran-1502T 

- - 18.11 22 0.81 1.0 0.139 0.139 6.7 M1 Bam -3168T 

69 76 24.47 23 0.88 1.1 0.139 0.165 7.4 M2 Tabas-1084L 

68 61 28.28 31 0.86 1.1 0.139 0.165 7.4 M2 Tabas-1084T 

98 94 0.31 1.4 1.38 1.1 0.139 0.165 7.7 M2 Ab bar-1362T 

- 100 0.0 0.0 2.73 1.1 0.139 0.165 6.4 M2 Zanjiran-1502L 

100 96 0.0 0.6 2.35 1.1 0.139 0.165 6.4 M2 Zanjiran-1502T 

83 57 3.02 9.5 1.1 1.1 0.139 0.165 6.7 M2 Bam -3168T 
 

As apparent in the last two columns of  Table 3 and the Figures, increasing slope's safety factor from 1 to 
1.1 brings about >50% reduction in seismic deformation. This reduction percentage for deformations with  
< 10cm is much higher. Often, the results of such probabilistic assessments lead to better engineering 
decisions [28]. 
 

6. DETERMINING THE HORIZONTAL ACCELERATION  
COEFFICIENT FOR DESIGNING 

 
The charts in Fig. 14a-d are prepared for PSF values of 0.9, 1.0, 1.1 and 1.2 and for four different PGA 
values. Other charts can be produced by users with different FS and PGA values.  

 



IJST, Transac

480

Fig. 1

The ev
- Both FS a
lower slope
- For the sam
- If ݇=0.5, 
may be ove
that ‘‘use o
has been sh
 Earthquake
- If ݇=0.5P
studied in th
coefficient 
displacemen
- In Iran, e
Designs of 
Design Cod
on the earth
low displac
be expected
recommend
- Seed reco
0.1 for earth
the order of
displacemen
displacemen

ctions of Civil E

14a-d. Seismic

valuations ba
and ݇value
 displacemen
me ݇value, 
 then PGA/g

erconservativ
f peak groun
own to give 

es (Kramer, 2
PGA/g along
his paper. Th
values as a

nt’’. 
earthquake c
roads, railw

de NO: 463 "
hquake zone
ement value

d. Therefore 
ded. 
mmended th
hquakes  of  
f 1.15 to ensu
nt as accep
nts lower th

Engineering, V

c coefficients 

ased on Fig. 1
s govern the
nt values are
magnitude o

g is used in c
ve for many 
nd acceleratio
excessively 

2004)’’. 
g with FS of
his is consiste
a ratio of p

code recomm
ays and brid
" in Iran, sei
". ݇ values 

es (<10 cm) f
based on the

hat ‘‘it is nec
6.5 magnitud
ure that disp

ptable, since
han 30cm ar

B

Volume 38, Num

versus anticip

14a-d are list
e magnitude 
e encountered
of the slope d
conjunction w
civil engine

on as the sei
conservative

f 1.0, the dis
ent with the 
eak accelera

mends effecti
dges. Accord
smic coeffic
ranging betw
for PGA≤0.3
e value of th

cessary to pe
de or 0.15 fo
lacements w
 he was de
re predicted 

B. Nadi et al. 
 

mber C2           

pated slope dis

ted as follow
of the antic

d. 
displacement
with PSF=1.

eering works
ismic coeffic
e assessment

splacements 
findings of H
ation such a

ive peak acc
ding to Iran R
cient is taken
ween 0.05 an
3g. However
e anticipated

erform a pseu
or 8.25 magn

will be accept
ealing with 

with Seed’

                        

splacements fo

ws: 
cipated displ

t depends on 
.0, no displa
s. This is con
cient in conju
ts of slope pe

will be lowe
Hynes and Fr
as ݇=0.5PG

celerations o
Road and Ra
n as a value b
nd 0.125 alo
r, for PGA>0
d peak accele

udo static an
nitude earthqu
tably small’’

earth dams
s recommen

                        

for different PG

lacement. W

peak acceler
acements sho
nsistent with
unction with
erformance in

er than 20 cm
ranklin [18] 

GA/g should

of 0.5g for t
ailway, Brid
between 0.05
ong with a F
0.3g, higher 
eration, high

nalysis for a 
uakes and ob
. Seed ackno
s. For ݇=0
ndations of 

                     A

GA values. (ɛ

With higher F

ration value.
ould be expec
h the current 
h a safety fac
n 

m for all PG
that showed

d be used fo

the Seismic 
dges Seismic 
5 and 0.125d
S of 1.0 wil
displacemen

her ݇values 

seismic coef
btain a safety
owledged ab
0.1, and PG
݇and FS. W

August 2014 

 
=1) 

FS values, 

. 
cted. This 
literature 

ctor of 1.0 

GA values 
d ‘‘seismic 
or 30 cm 

Resistant 
Resistant 

depending 
ll result in 
nts should 
should be 

fficient of 
y factor of 
out 1m of 

GA<0.45g, 
When the 



Seismic performance of slopes in pseudo-static… 
 

August 2014                                                                                IJST, Transactions of Civil Engineering, Volume 38, Number C2      

481

݇value of 0.15 and FS of 1.15 is applied with PGA=0.90g, the proposed methodology in this paper 
predicts maximum displacement of 140cm. This means that even for high PGA values, 
  Seed’s recommendation may be un-conservative. 
- Magnitude of the slope displacement depends on the maximum horizontal equivalent 
acceleration		ሺ݇௫ሻ	which depends on PGA and	 ௦ܶ/ ܶ . 
- The Newmark-type rigid block analysis was overly conservative for cases where the ௦ܶ/ ܶ was greater 
than about 0.5 and un-conservative when ௦ܶ/ ܶ was in the range of 0.2–0.5 for PGA ൏ 0.5	݃.When PGA 
 0.5	g	Newmark-type rigid block analysis was overly conservative for all of ௦ܶ/ ܶ.PGA and ௦ܶ/ ܶ	have 
significant effect on ݇௫ and slope displacement. 
 

7. CONCLUSION 
 

The pseudo static approach is a well-known method to calculate the seismic stability of slopes. However, 
in today’s practice, performance based design concept necessitates the anticipated displacements to be 
known instead of a single pseudo static safety factor (FS). Although there are also several 
recommendations for selection of ݇value, many of them depend on judgment and expertise. 

Based on the provided charts, while designing an earth slope under specific ݇and FS, its 
performance can be taken into consideration, simultaneously. Design of slopes without consideration of its 
performance may be conservative or underestimated. This kind of application is a novel approach. 
Calculated displacements are then investigated in terms of ݇௬/PGA values and being consistent with the 
literature. Earthquake induced slope displacements are found to be very sensitive to the value of the yield 
accelerations. Displacements decrease with increase in the acceleration ratios. Several equations are 
derived for all data and for different earthquake magnitude values (M) with and without distance 
constraint and for different peak acceleration (PGA) ranges. The obtained equations are compared with 
literature and it is shown that categorizations for earthquake magnitude, distance to the epicenter and peak 
acceleration are important and effective tools. 

Based on the results, a methodology is presented in the context of a coupled displacement pseudo-
static safety factor–seismic coefficient analysis. The results revealed that seismic coefficient for any 
allowable displacement should be based on anticipated PGA values. Use of high FS values results in lower 
displacements. It is also found that use of ݇=PGA/g in conjunction with FS=1.0 results in negligible 
displacement and it may be over conservative for any civil engineering works. If ݇=0.5PGA/g along with 
FS of 1.0, displacements will be lower than 30cm for all PGA values studied in this paper, which is 
consistent with the well-known findings of Hynes and Griffin [18] . Evaluations are also made for Seed’s 
recommendations and it is shown that Seed’s criterion limits the displacement values to about 100cm for 
accelerations as high as 0.7g.  
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