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Abstract– Semiarid regions with their exceptional weather conditions, low precipitation, and high 

evapotranspiration pose a great challenge to water resources managers. One possible way to face 

this challenge is the conjunctive use of both surface water and groundwater resources in these 

regions. This paper proposes a conjunctive use model which has been implemented in Najafabad 

plain in central Iran. The model is one of simulation-optimization in which the simulation portion 

combines the Fuzzy inference system and Neural Networks (FNN) in order to take the climate 

conditions and the uncertainty in the relevant data into consideration while the optimization 

portion consists of a multi-objective Genetic Algorithm (GA). The objectives of the optimization 

model include not only minimizing water shortages in meeting the irrigation demands by the three 

irrigation systems operating in the region but also minimizing groundwater drawdown in order to 

control groundwater extraction in the aquifer. These objectives are subject to constraints on the 

maximum amount of surface and groundwater allocated to the irrigation zones and the maximum 

capacity of surface irrigation systems and also maximum and minimum allowable cumulative 

drawdown in the planning horizon. The results of the proposed FNN-GA model demonstrate the 

importance of the interactions between surface water and groundwater resources considered in a 

conjunctive use model for the planning and management of water resources in semiarid regions.           

 

Keywords– Conjunctive use, Simulation-optimization, Neural Networks, Fuzzy Inference System, Genetic 

Algorithms  

 

1. INTRODUCTION 
 

Semiarid regions with low precipitation and high potential of evapotranspiration are abundant in central 

Iran. Rapid population growth, increasing irrigation demand, and industrial development during the past 

decades have led to increased pressure on water resources in semiarid regions [1]. In those regions, both 

sources of water should be managed conjunctively so as to minimize fluctuations in total water demands 

caused by variations in rainfall patterns. Conjunctive use has been defined in more ways than one, but in 

general it is defined as the allocation of surface water and groundwater in terms of quantity and/or quality 

so as to achieve one or more objectives while satisfying certain constraints [2-4]. However, most systems 

are introducing ‘joint use’ of surface and groundwater to overcome problems of poor water delivery or 

quality, rather than systems which actually maximize water utility [5]. The implementation of conjunctive 

operation of surface water and groundwater can achieve reasonable spatiotemporal allocation of water 

resources to improve utilization ratio of water resources and water supply guaranteed rate and realize 

comprehensive treatment of drought, water logging and alkali [6]. The conjunctive use models based on 

the particular problem under consideration and the associated assumptions may be classified with such 

models as linear programming, dynamic programming, hierarchical optimization, nonlinear programming, 
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and simulation-optimization models, or alternatively with evolutionary algorithms [7]. Linear 

programming has been successfully applied in conjunctive modeling by a large number of authors 

including [8-10] in the past, and more recently [11, 7]. Dynamic programming has been used for its 

advantages in sequential decision making process and applicability to nonlinear systems by many 

researchers including [12, 13] in the past, and recently by [14, 15]. Hierarchical or multilevel optimization 

models have been successfully applied by [16-18]. As most conjunctive use problems are nonlinear [19, 

20] opted for nonlinear programming in their studies. The main disadvantage with most classical 

optimization techniques is their reliance on gradient search techniques in which the gradients are usually 

calculated numerically. The numerical estimation of gradients is the most expensive part of optimization-

based management models and may lead to large errors. Evolutionary techniques such as Genetic 

Algorithm (GA) are designed to cope with these problems. These techniques have been used in nonlinear 

non-convex problems [21-24]. Furthermore, simulation techniques such as neural networks are based on 

numerical optimization techniques. Hence, they suffer from a similar drawbacks and need to compute the 

gradient and sometimes the Hessian matrix which is a complicated and expensive process. New 

techniques such as back propagation neural networks based on conjugate gradient technique or an 

improved Newton method (Levenberg-Marquardt algorithm) have, however, been proposed for coping 

with this problem that not only rapidly converge but also seem to be more practical [25]. 

In conjunctive use, simulation techniques are applied to establish a meaningful relationship between 

groundwater drawdown and aquifer depletion, but incorporating the simulation model into an 

optimization-based management model is a complex and difficult process. Embedding techniques and 

response matrix approach are the two methods generally used for this purpose [26]. In a coupled 

simulation-optimization model, the simulation model accounts for the physical behavior of surface water-

groundwater systems, whereas the optimization model accounts for the conjunctive management aspects 

of the system [27]. If conjunctive use is to be implemented in the study area for a rather long period of 

time, then the effect of climate change and the resulting uncertainty in data must also be taken into 

consideration for irrigation planning and management. One method commonly used is the Fuzzy Inference 

System (FIS) which uses farmers’ experience and knowledge as well as expert judgments in developing an 

optimal crop planning and predicting a reliable demand for irrigation on the basis of climate conditions 

[28]. Leung used fuzzy linear programming (FLP) to study water allocation to three farming areas. The 

goal was to program water consumption for enhanced profitability [29]. Özger used a genetic algorithm 

(GA) for training the fuzzy rules and developed if-then rules with linguistic expressions [30]. He also 

developed two different FIS models to predict the discharge of the Euphrates River in Turkey. In the case 

of conjunctive use of surface water and groundwater, the major concern is groundwater level variation 

which can lead to a high shortage in groundwater reservoir storage or cause water level to be uplifted 

which leads to the need for draining the uplifted water to hinder damaging crops. So groundwater 

drawdown is required to be controlled and this parameter is usually predicted by a simulating model. A 

common model used in groundwater level forecasting is neural network and if it is decided to consider 

uncertainty resulted from the effect of the climate change, it is also necessary for a FIS model to be 

coupled with the neural network. This linkage can be done with a single framework of Adaptive Neuro-

Fuzzy Inference System (ANFIS) [31, 32] 

In this paper, the Levenberg-Marquardt Back Propagation (LMBP) neural network is applied to 

simulate and determine the relationship between groundwater drawdown and extraction from the 

Najafabad aquifer. Moreover, a multi-objective genetic algorithm is implemented to achieve the 

management objectives in the optimization model. The objectives consist of minimizing shortages in 

meeting irrigation demands and simultaneously minimizing monthly groundwater drawdown over one 

year as the management period for three irrigation systems located in Najafabad plain. Also, a fuzzy 
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inference system is employed that takes into account the variations in weather condition and the 

uncertainty resulting from climate conditions within a twenty-year period and as a result of relying on 

expert judgments in developing the FIS rules and also impeding formation the redundant rules which may 

enhance computational burden and cause computer to make error, the application of a single framework of 

ANFIS is impeded. On the other hand, the process involves simulating and computing groundwater 

drawdown by means of the neural network followed by the formation of FIS rules with the fuzzificable 

parameters as the premises and the calculated drawdown by neural network as a consequence of the rules. 

Finally, the numerical parameters are fed into the FIS and the drawdown is calculated based on 

uncertainty as the ultimate output of the simulation model which is used as the one of inputs for the 

optimization model.  

 

2. STUDY AREA 

The study area is Najafabad plain, a part of the Zayandehrood River Basin located in west-central Iran as 

shown in Fig. 1. In recent years, water has become increasingly scarce in the region and the Zayandehrood 

Basin has shown signs of salinization of agricultural land and increased pollution in the lower reaches of 

the river. The Najafabad plain occupies an area of approximately 1,720 km
2
 while the Najafabad aquifer 

has an area of about 1,142 km
2
, with geographical coordinates between 50º 57’ to 51º 44’ north longitudes 

and 32º 20’ to 32º 49’ east latitudes. The Najafabad aquifer is recharged by irrigation percolation, canal 

and river seepages, as well as direct precipitation on the plain. The total number of pumping wells in the 

aquifer amounts to around 10,160 wells with depths ranging between 17 and 120 m and discharge rates 

ranging from 2 to 110 l/s [33]. 

 
Fig. 1. Najafabad Plain in Zayandehrood River Basin, Iran 

The Najafabad sub-basin has a predominantly semi-arid climate. Average annual rainfall is only 150 mm, 

most of which falls in the winter months from December to April. Annual potential evapotranspiration is 

about 1,950 mm [34]. Modern surface irrigation started some 42 years ago with the construction of the 

Nekouabad diversion weir. The weir controls the main channels on both the left and right banks. 

Khamiran surface irrigation system also started operation when Khamiran Dam was constructed 20 years 
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ago (Fig. 2). Over the past decade, a historical low rainfall occurred at the head of the Zayandehrood 

Basin, which was further complicated by the growing demand for water. To combat the consequences, 

farmers have been forced to look for strategies that can help them cope with water scarcity at field level. 

However, the strategies adopted mainly involve increased groundwater use, adapted production strategies, 

or adopting other activities for their livelihood. In a conjunctive use system, surface water is replaced by 

increasing groundwater extraction in drought situations and/or groundwater table is replenished by surface 

water when surface water is abundant, whereby shortages are somehow compensated for by appropriate 

utilization and proper management of both surface and ground water resources [35]. 

 
Fig. 2. Nekouabad and Khamiran irrigation channels 

 

3. METHODOLOGY 

a) Neural networks 

In this study, simulation is accomplished by a two-stepped model the first step of which is performed by a 

neural network model. The model employed in this study is a network based on the Levenberg-Marquardt 

Back Propagation (LMBP) algorithm as a special type of the Newton method. In the Newton method, 

second order derivatives need to be calculated in a template of a matrix named ‘the Hessian matrix’. The 

purpose of the LMBP algorithm, however, is to eliminate the requirement for computing this matrix. One 

advantage of this algorithm is the good balance it keeps between the speed of the Newton method and the 

convergence guaranteed by the Steepest Descent method. Convergence is assumed to be fulfilled when the 

gradient norm becomes less than a default value or when the sum of squared errors falls below a specific 

limit. The LMBP neural network has the three inputs, hidden, and output layers as shown in Fig. 3. The 

tansig and the purlin transfer functions are employed in the hidden and output layers, respectively. It must 

be mentioned that LMBP goes from one iteration to the next only if the performance index (i.e., the sum 

of the squared errors) in each iteration is less than that in the previous iteration; hence, the performance 

index is minimized [25]. 
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Fig. 3. Three-layer LMBP neural network architecture 

b) Fuzzy inference system 

The Fuzzy Inference System (FIS) is implemented as the second step of the simulation model. Fuzzy 

logic is a generalization of the classic logic developed to deal with transitional concepts exemplified by 

the one between completely true and completely false. The fuzzy set theory which is used to cope with 

uncertain concepts in natural language contributes a membership degree to each element through a 

membership function. For classic sets, the membership degree only takes the two values of 0, as non-

membership, and 1, as membership, whereas in fuzzy sets, the membership degree could obtain each value 

from [0,1]. The intermediate values represent partial membership in a specific set [36]. In this paper, a 

singleton fuzzy membership function is attributed to the consequence of the FIS rules. This function is a 

constant number and the premises of the rules are input fuzzificable parameters in the form of Gaussian 

membership functions. So this FIS would be a zero order Sugeno Inference System. In this study, the FIS 

is used in order to estimate drawdown in groundwater table level. The mean drawdown resulting from 

different premises is the fuzzy system output in each rule. Once the maximum number of possible rules is 

formed, input parameters are fed as observations into the rules, and the weighted average defuzzification 

method is used, the drawdown related to the relevant month is computed and employed as the final 

simulation result. 

c) Genetic algorithm 

Genetic Algorithm used in the optimization model is a smart structure for searching randomly for 

optimum solutions in the likely zones. The main advantages of GA may be summarized as follows:  

1- Capability to search simultaneously in more than one zone so as to not become trapped in local 

optima, capability to cope with each type of objective function and each type of search space,  

2- Accurate computation of optimum points without any need for approximation in the objective 

function, and 

3- Application of general probability laws rather than deterministic laws. 

 The algorithm utilizes certain useful operators such as selection, crossover, and mutation. The best 

selection method is the tournament method which finally selects the chromosome with the best fitness 

among other random ones. The crossover probability, Pc, usually lies in the scope of 0.5-1 and is one of 

the input parameters to GA. If the random number produced for each couple of the population is less than 

Pc, the crossover is applied over those chromosomes. The final GA operator, i.e. mutation, involves the 

creation of a random change in a gene’s information. The probability for changing a decision variable in 
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each evolutionary step is considered as Pmut. If the random number produced for each gene is less than 

Pmut, the mutation takes place. Mutation gives rise to diversity in the population in order to impede the 

premature convergence and to reach non-optimum solutions. The convergence criteria are twofold: 1) 

Passing a specific number of generations while GA is running, 2) Determining a condition such that the 

fitness of the best member of the population is not improved within a number of generations [37]. 

 

4. SIMULATION MODEL 

In this paper, the simulation model was initially designed before it was linked to the optimization model. 

As mentioned earlier, the simulation model consists of the two models of neural network (NN) and fuzzy 

inference system (FIS). The former, a LMBP neural network was designed with input, hidden, and output 

layers. The input layer includes five parameters: 1) groundwater extraction, 2) precipitation, 3) 

evaporation, 4) surface water allocation, and 5) groundwater level. The NN output is drawdown of the 

groundwater level. All the data are reported as monthly records and the output will, therefore, be 

generated as monthly figures, too. The planning horizon is the 2005-2006 water year as a normal water 

year beginning in October of the previous year and ending in September of the following year. The NN is 

a 5-30-1 network consisting of 30 neurons in the hidden layer. The number of hidden layer neurons is 

determined after a number of trial and errors in running the network until the maximum correlation 

coefficient and/or the minimum sum of squared errors is reached. For each of the three study areas, the 

NN model was independently designed and performed. All data series were divided into three parts (65% 

for Training, 25% for Testing and 10% for Validation) and the NN performance was evaluated based on 

the criterions R
2
 as the Determination Coefficient and ρ as the Correlation Coefficient [38, 39]. The 

calculated coefficients are shown in Table 1. These figures indicate a plausible precision in NN’s learning 

and also according to the figures attained for Testing and Training stages, overtraining hasn’t occurred. 
 

Table 1. Values of Correlation Coefficient (R) and Determination Coefficient (R
2
) resulted from NN model 

Subarea Training (R) Testing (R) Overall (R) Overall (R
2
) 

Khamiran 0.80 0.72 0.68 0.39 

Nekouabad right 0.89 0.67 0.68 0.31 

Nekouabad left 0.79 0.69 0.71 0.32 

The NN model thus designed was employed to predict drawdown as a consequence of the FIS rules. 

For preparing the FIS model, all the available data consisting of 228 series of five data were divided into 

three categories each containing 76 series of data and named as high, moderate, and low, respectively, 

with respect to the magnitude of the values in each category. The categories were subsequently inserted 

into the NN model in order to calculate the mean drawdown for each rule in the FIS model. The Gaussian 

membership functions were considered as membership functions of input parameters. Fuzzy singleton 

membership functions were used to indicate mean drawdown in the consequence of each rule. The 

Gaussian membership function is defined as follows: 

Membership Function = exp (–(x–c)
2
/(2σ

2
))                                         (1) 

These parameters were calculated numerically and shown in Tables 2 to 5 in terms of the input 

parameters. 

Table 2. Characteristics of Gaussian membership functions for groundwater extraction parameter  

Nekouabad left Nekouabad right Khamiran Subarea 
Low Moderate High Low Moderate High Low Moderate High Class 
3.58 26.12 49.1 2.51 18.9 36.77 0.26 2.76 5.6 c(MCM) 

6.3 5.07 9.25 4.39 3.4 6.83 0.0087 0.69 0.88 (MCM)σ 
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Table 3. Characteristics of Gaussian membership functions for precipitation parameter  

Nekouabad left Nekouabad right Khamiran Subarea 

Low Moderate High Low Moderate High Low Moderate High Class 

0 3.07 32.67 0 2.07 32.67 0 4.2 37.32 c(mm) 

0 3.86 18.45 0 3.86 18.45 0 4.24 16.42 (mm)σ 

 

Table 4. Characteristics of Gaussian membership functions for surface water network allocation parameter  

Nekouabad left Nekouabad right Khamiran Subarea 

Low Moderate High Low Moderate High Low Moderate High Class 

0 12.7 45.87 0 4.23 15.3 0 0 1.52 c(MCM) 

0 9.57 10.65 0 3.19 3.55 0 0 1.15 (MCM)σ 

 

Table 5. Characteristics of Gaussian membership functions for groundwater level parameter  

Nekouabad left Nekouabad right Khamiran Subarea 

Low Moderate High Low Moderate High Low Moderate High Class 

15.74 24.35 32.7 17.88 22.7 28.05 23.55 27.71 31.45 c(m) 

1.03 3.25 2.95 0.77 1.3 2.43 1.43 0.68 1.3 (m)σ 

 

Among the input parameters inserted into the FIS, the variable parameters consisted of groundwater 

extraction and surface water allocation. Precipitation and groundwater level were considered to be equal to 

the monthly means of a year with the planning horizon taken to be 20 years starting from the 1991-1992 

water year to 2009-2010 water year. Furthermore, evaporation was not inserted into FIS model due to its 

non-fuzzificability. Table 6 shows the relationships among the different classifications of the FIS model 

for forming the 43 rules. 

 
Table 6. Relationship among different classes of fuzzificable parameters in FIS rules 

Groundwater level Surface water allocated Precipitation Groundwater extraction 

Moderate/High Moderate/High Moderate/High Low 

Moderate/High/Low Moderate/High/Low Moderate/High/Low Moderate 

Moderate/Low Moderate/Low Moderate/Low High 

 

5. OPTIMIZATION MODEL 

The objectives of the optimization model were minimizing shortages in meeting irrigation demands in 

each subarea and also minimizing groundwater level drawdown in order to control groundwater extraction 

subject to certain constraints such as maximum and minimum allowable cumulative drawdown and 

maximum capacity of surface irrigation systems, 

Minimize          Z1 =               for z = 1, 2, 3                     (2) 

Minimize          Z2 =            for z = 1, 2, 3                     (3) 

                          Di,z =               for i = 1, 2,…, 12              (4) 
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  Ai,z =                      for i = 1, 2,…, 12 and z = 1, 2, 3                           (5) 

   Supi,z = az.GWi,z+az.bz.cz.SWi,z (6) 

Subject to: 

    for z = 1, 2, 3                                     (7) 

                         SWi,z ≤ CCi,z×αz                                          for i = 1, 2,…, 12 and z = 1, 2, 3                   (8) 

In this model, the probability of groundwater level to be uplifted and negative drawdown values is 

met by assigning a negative value to the minimum allowable cumulative drawdown. Among the points 

suggested by the Pareto curve, the one ultimately selected is that which has relatively lower values of Z1 

and Z2 compared with other points of the curve by a simple discrete compromise programming. It must 

also be mentioned here that the sum of the squared drawdown in the second objective function cannot be 

replaced by the sum of the drawdown values. This is because the optimization model would then tend to 

reduce the second objective function down as much as possible and reduce each monthly drawdown down 

to a big negative value. Apparently, this trend is not logical and can never be expected to happen in reality. 

In the optimization model, Pc is equal to 0.7 and the number of chromosomes is equal to 190. Also, 

considering surface water allocation, groundwater extraction, and the summation of them as the gross 

supply, the number of genes will be equal to the total number of decision variables, i.e., 36 in each 

chromosome. The genetic algorithm stops when the number of generations exceeds a specific value 

inserted as the input parameter into the model. Meanwhile, the error of the objective function between two 

successive iterations must be lower than a default value which is taken to be 10
-4

. Figure 4 illustrates the 

structure of the simulation-optimization model. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Schematic representation of the linked simulation-optimization model 
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6. RESULTS AND DISCUSSION 

Considering the fact that the present simulation-optimization model only involves one of the sub-basins 

and based on the policy adopted for operating the irrigation systems, the maximum volume of surface 

water available in each period is computed based on the average volume of water available in each 

irrigation system [35]. The results of the management model implemented in the three zones of Khamiran, 

Nekouabad right bank, and Nekouabad left bank are presented in Figs. 5 to7. 

Clearly, a rather small portion of the water demand during the winter (months 4, 5, and 6) was met in 

Khamiran. However, the water demand in this season was also negligible compared to those in other 

seasons. In the summer (months 10, 11, and 12) when the water demand for irrigation was at its 

maximum, 26%, 27%, and 16% of the water demand was met in July, August, and September, 

respectively. This indicates that the conjunctive use policy was capable of efficiently managing the water 

resources systems in this region while drawdown was also at its minimum level or close to zero. For 

example, the values for drawdown during the final three months of the water year were 0.0925, 0.0928, 

and 0.0924 meters, indicating that groundwater extraction was appropriately implemented to meet the 

demands satisfactorily in spite of the negligible drawdown. In the Khamiran irrigation zone, the maximum 

water demand met was 80.18% which belonged to the month of December while the minimum was about 

1.49% and belonged to the month of March. 

A trend similar to the one in Khamiran is observed in the Nekouabad right bank irrigation zone, but 

only with some differences. For example, the maximum value for the demand met in this zone occurred in 

the spring rather than in the summer. However, the low winter demands were not met, similar to the 

situation in Khamiran. The maximum value for drawdown in this zone was 0.174 meters which occurred 

in April and June when 63% and 58% of the demand were met respectively, despite such a small level of 

drawdown. In fact, the small amount of drawdown couldn’t indicate the small groundwater extraction. 

Because in these months the irrigation demands are rather high and considerably met, so the groundwater 

extraction must be high and consequently the small drawdown may be sought in the initially high 

groundwater level caused by a number of consecutive negative drawdown in previous months which 

affects the aquifer’s response. In the Nekouabad left bank irrigation zone, like in Khamiran, the maximum 

amount of water demand meeting occurred in the spring with a mean value of 42% but its minimum 

occurred in winter. Drawdown in this zone is always positive and negligible while the maximum demand 

meeting usually occurs in July which is about 76% and may be the cause of a drawdown of 1.27 meters 

taking place in this month which is about highest among all drawdowns of the water year. 

 
Fig. 5. The water demand and monthly allocated surface water and groundwater to Khamiran zone 
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Fig. 6. The water demand and monthly allocated surface water and groundwater to Nekouabad right zone 

 
Fig. 7. The water demand and monthly allocated surface water and groundwater to Nekouabad left zone 

 

7. CONCLUSION 

A simulation-optimization linked model was developed in this paper for the conjunctive use of surface 

water and groundwater resources. In this model, neural networks combined with the fuzzy inference 

system were executed in a simulation model in which the neural network was linked to the fuzzy system. 

The former predicts an estimated value for the groundwater drawdown while the latter uses the predicted 

drawdown value as the consequence in its rules. Thus, a surface water and groundwater interaction 

simulation model was formed in which the Fuzzy-Neural Network (FNN) model is capable of considering 

uncertainty in the data due to climate conditions. An optimization model based on the multi-objective 

genetic algorithm (GA) was created and linked to the simulation model in order to minimize shortages in 

meeting net water demands and also to minimize groundwater drawdown. The FNN-GA model was then 

applied to investigate the situation in Najafabad plain in Iran. Results indicate that the use of this 

conjunctive use model does not lead to meeting all the demand completely. Specifically, a large gap is 

found between water supply and water demand in autumn and winter seasons. However, given the low 

water demand in these two seasons and the satisfactory meeting of the demands in the summer, the good 

performance of the proposed conjunctive use model can be concluded.  

Anyway, a simulation-optimization model is not a completely accurate model due to some 

simplifications in both simulation and optimization sectors. The evolutionary algorithms such as Genetic 
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algorithm are the best choices compared with other methods like non-linear programming for solving the 

multi-objective optimization problems like the model of this paper and the similar models with 

discontinuous, multi-modal, combinatorial and severely nonlinear objective functions or non-

differentiable and non-convex design spaces. In spite of these superiorities, Genetic algorithm can be 

improved in terms of its capability in global search. The Back Propagation Neural Network (BPNN) used 

in this paper as simulation model can be also improved in terms of architecture, generalization and 

convergence to optimal weights and biases. It is strongly suggested that these improvements be carried 

out, thereby the capabilities of the model and then the model’s reliability will be enhanced. Imposing these 

improvements gives BPNN outperformance and hinders the application of complex, time-consuming and 

hard-to-handle process-oriented, physical-based models. 

 

Legends 

Di,z  volume of water demand in zone z in month i (MCM), 

Supi,z  volume of water supply in zone z in month i (MCM), 

ΔHi,z  drawdown in zone z in month i (m), 

ΔHopt  the optimum drawdown which is considered zero (m) in this paper, 

cropi, volume of water needed for harvest m in month i (MCM/m
2
), 

Ai,m  cropping area of the harvest m in month i, 

Ai,z  the potential cultivable area of zone z in month i (ha), 

az  efficiency of water use in the farm in zone z,  

bz   efficiency of water use in the main channels in zone z, 

cz  efficiency of water use in the secondary channels in zone z,  

GWi,z volume of groundwater extracted in zone z in month i (MCM),  

SWi,z  volume of water supplied from surface water to zone z in month i (MCM),  

ΔHmin  minimum allowable cumulative drawdown in a year,  

ΔHmax  maximum allowable cumulative drawdown in a year,   

CCi,z maximum volume of water available for surface water network in zone z in month i (MCM),  

αz  efficiency of surface water network for zone z,  

i  number of months, 

z number of zones, 

m number of harvests. 
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