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Abstract– A new ant algorithm, namely Colony-Mutated Ant System (CMAS), circumventing the 
premature convergence phenomenon is proposed in this paper and applied to pipe network 
optimization problems. The method uses a simple but effective mechanism, namely Pheromone 
Replacement Mechanism (PRM), to make sure that the global-best solution path always has the 
maximum trail intensity. This mechanism introduces enough exploitation into the method and, 
more importantly, enables one to exactly predict the number of global-best solutions at each 
iteration of the algorithm without the necessity of calculating the cost of the solutions created. This 
number is used as a measure for premature convergence of the method at each iteration. The 
colony is then mutated such that a predefined number of global-best solutions survive the mutation 
process. Two different mutation mechanisms, namely one-bit and uniform mutation are introduced 
and used. The probability of mutation is adjusted at each iteration so that the required number of 
global-best solutions survive the mutation. The method is shown to produce results comparable to 
Max-Min ant system (MMAS) algorithm, while requiring less free parameter tuning. The 
application of the method to a benchmark example in the pipe network optimization discipline is 
presented and the results are compared. The results indicate that the proposed CMAS method 
shows improved performance with improved convergence characteristics. Furthermore, the 
method requires less computational effort for tuning purposes due to the fewer number of free 
parameters compared to the MMAS method.           
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1. INTRODUCTION 
 

Ant algorithms were initially inspired by the observation that ants can find the shortest paths between food 
sources and their nest even though they are almost blind. Individual ants choose their paths from the nest 
to the food source in an essentially random fashion [1]. While walking from food sources to the nest and 
vice versa, however, ants deposit, on the ground, a substance called pheromone, forming in this way a 
pheromone trail. Ants can smell pheromone and, when choosing their way, they tend to choose, in 
probability, paths marked by strong pheromone concentrations. The pheromone trail acts as a form of 
indirect communication called stigmergy [2], helping the ants to find their way back to the food source or 
to the nest. Also, it can be used by other ants to find the location of the food sources found by their nest 
mates. It has been shown experimentally [3] that this pheromone trail following behavior can give rise, 
once employed by a colony of ants, to the emergence of the shortest paths.  

Ant Colony Optimization (ACO) is a general framework for developing optimization algorithms 
based on the collective behaviour of ants in their search for food [4]. The searching behavior of Ant 
Colony Optimization Algorithms (ACOA) can be characterized by two main features [5], exploration and 
exploitation. Exploration is the ability of the algorithm to broadly search through the solution space, while 
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exploitation is the ability of the algorithm to search thoroughly in the local neighborhood where good 
solutions have previously been found. Higher exploitation is reflected in the rapid convergence of the 
algorithm to a suboptimal solution, while higher exploration results in a better solution at higher 
computational cost due to the slow convergence of the method. By definition, these attributes are in 
conflict with one another. A trade-off between exploration and exploitation in ant algorithms is, therefore, 
vital for a logical balance between the optimality of the solution and the efficiency of the method. To 
encourage exploitation, techniques have been adopted to ensure that information about the best solutions 
govern the search process. Bullnheimer et al. [6] suggested an elitism strategy where information about 
the best solution is emphasized in the algorithms' search procedure. Dorigo and Gambardella [7] used a 
technique to confine the search to the local neighborhood of the best solution. Dorigo et al. [8] used local 
optimizers to further improve good solutions. The biggest problem that can be caused by such exploitative 
methods is insufficient exploration and premature convergence to sub-optimal solutions. Different 
remedies in the form of anti-convergence techniques are suggested for premature convergence phenomena 
often encountered when using these exploitative methods. Dorigo and Gambardella [7] suggested a 
method based on discouraging the re-selection of previously selected solutions. The most notable of these 
methods is the Max-Min Ant System (MMAS) proposed by Stutzle and Hoos [9], in which the pheromone 
trails are adjusted at each iteration such that no one solution dominates the stochastic selection process. 
Afshar [10] has recently proposed an alternative form of the ant's stochastic decision policy which 
overcomes the stagnation phenomena often encountered with the algorithms using the elitist strategy. The 
proposed method has the advantage of not introducing a free parameter, while still producing comparable 
results with other anti-stagnation methods. 

A new anti-stagnation method is proposed in this paper to be used with the elitist strategy of 
pheromone updating in ACO algorithms. The method is based on the observation that at the stagnation 
point, the colony is dominated by one solution which may or may not be the global best solution of the 
search depending on the pheromone updating procedure used. The proposed method uses a Pheromone 
Replacement Mechanism (PRM) to ensure that the colony is only dominated by the global-best solution 
when the stagnation occurs. This mechanism is advantageous as it enables one to exactly calculate the 
number of global-best solutions created at each iteration. The colony of solutions created at each iteration 
is mutated such that a predefined number of these solutions survive the mutation process. Two different 
mutation mechanisms, namely one-bit and uniform mutation are devised and used. The probability of 
mutation is calculated as a function of the predicted number of global-best solutions constructed at each 
iteration to introduce enough exploration into the search process. The proposed method is used here in 
conjunction with the ant system using elitist strategy, and hence the name Colony-Mutated Ant System 
(CMAS) is used for the resulting algorithm. The application of the proposed method to one of benchmark 
problems in the pipe network optimization literature is addressed and the results are compared with those 
of MMAS. The experiments show the proposed method is able to produce comparable results to that of 
MMAS while introducing fewer free parameters. 
 

2. ANT COLONY OPTIMIZATION ALGORITHM 
 

In the Ant Colony Optimization (ACO) meta-heuristic a colony of artificial ants cooperate in finding good 
solutions to discrete optimization problems. Application of ACO algorithm to the arbitrary combinatorial 
optimization problem requires that the problem can be projected on a graph (Dorigo and Gambardella 
1997). Consider a graph G = (D,L,C) in which D={ }n21 d,....,d,d  is the set of decision points at which 
some decisions are to be made, L={ }ijl  is the set of options j=1, 2,…,J at each of the decision points 
i=1,2,…,n and finally C= { }ijc  is the set of costs associated with options L={ }ijl . The components of sets 
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D and L may be constrained if required. A path on the graph is called a solution (φ) and the minimum cost 
path on the graph is called the optimal solution (φ*). The cost of a solution is denoted by f(φ) and the cost 
of the optimal solution by f(φ*).  

The basic steps on the ACO algorithms may be defined as follows [1]: 
1- m ants are randomly placed on the n decision points of the problem and the amount of pheromone trail 
on all options are initialized to some proper value at the start of the computation. 
2- A transition rule is used for ant k at each decision point i to decide which option is to be selected. Once 
the option at the current decision point is selected, the ant moves to the next decision point and a solution 
is incrementally created by ant k as it moves from one point to the next one. This procedure is repeated 
until all decision points of the problem are covered and a complete solution is constructed by ant k. The 
transition rule used in the original ant system is defined as follows [1]: 
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where )t,k(pij  is the probability that the ant k selects option )t(lij for the ith decision at iteration t; 

)t(ijτ  is the concentration of pheromone on option ijl at iteration t; )(
1

ij
ij c=η is the heuristic value 

representing the cost of choosing option j at point   i, and α and β are two parameters that control the 
relative weight of the pheromone trail and heuristic value referred to as pheromone and heuristic 
sensitivity parameter, respectively. The heuristic value ijη is analogous to providing the ants with sight 
and is sometimes called visibility. This value is calculated once at the start of the algorithm and is not 
changed during the computation. The role of the parameters α and β can be best described as follows. If 
α=0, the cheapest options are more likely to be selected leading to a classical stochastic greedy algorithm. 
If on the contrary β=0, only pheromone amplification is at work, which will lead to the pre-mature 
convergence of the method to strongly sub-optimal solution [1].  
3- The cost f(φ) of the trial solution generated is calculated. The generation of a complete trial solution and 
calculation of the corresponding cost is called a cycle (k).  
4- Steps 2 and 3 are repeated for all m ants of the colony at the end of which, m trial solutions are created 
and their costs are calculated. Generation of m trial solution and the calculation of their corresponding 
costs is referred to as an iteration (t). 
5- The pheromone is updated at the end of each iteration. The general form of the pheromone updating 
used in the ant system is as follows [1]: 

 
ijijij )t()1t( τΔρττ +=+                                                              (2) 

 
where )1t(ij +τ is the amount of pheromone trail on option j of the ith decision point, i.e. option ijl , at 
iteration t+1; )t(ijτ concentration  of pheromone on option ijl  at iteration t; 10 ≤≤ ρ  is the coefficient 
representing the  pheromone evaporation and ijτΔ  is the change in pheromone concentration associated 
with option ijl . The amount of pheromone trail )t(ijτ  associated with option ijl  is intended to represent 
the learned desirability of choosing option j when in decision point i. The pheromone trail information is 
changed during the problem solution to reflect the experience acquired by ants during problem solving. 
The main role of pheromone evaporation is to avoid stagnation, that is, the situation in which all ants end 
up doing the same tour. In addition, evaporation reduces the likelihood that high cost solutions will be 
selected in future cycles. 
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Different methods are suggested for calculating the pheromone change. In the original ant system 
suggested by Dorigo et al. [1], all ants deposit pheromone on the options they have selected to produce the 
solution, 

 
k
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ij ττ Δ=Δ ∑
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                                                                   (3) 

 
in which k

ijτΔ   is the pheromone deposited by ant k on option ijl during iteration t. The amount of 
pheromone change is usually defined as [1]: 
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where k)(f ϕ  is the cost of the solution produced by the ant k and R is a quantity related to the 
pheromone trail called pheromone reward factor. The amount of pheromone added to each of the options 
during a cycle is a function of the cost of the trial solution generated. The better the trial solution and 
hence the lower the cost, the larger the amount of pheromone added to the option. Consequently, solution 
components that are used by the best ant and form a part of the lower cost solution receive more 
pheromone and are more likely to be selected by future ants. This choice clearly helps to direct the search 
towards good solutions.  

At the end of each iteration, each ant has generated a trial solution. The pheromone is updated before 
the next iteration starts. This process is continued until the iteration counter reaches its maximum value 
defined by the user. A note has to be added regarding the feasibility of the solutions created by ants in 
constrained optimization problems. If the constraints can be explicitly defined in terms of the options 
available at a decision point, the ants are forced to create feasible solutions by limiting the available 
options to those leading to feasible solutions. In TSP, for which the ant algorithms are originally devised 
and tested on, the feasibility of the solution requires that each point is visited once and only once and that 
the finishing point is the same as the starting one. This is not, however, possible on optimization problems 
such as pipe network optimization problems, where the constrained are implicitly defined in terms of the 
options and, therefore, the feasibility of the solution is only known when the solution is totally created. In 
these problems, a higher total cost is usually associated with the infeasible solutions via use of a penalty 
function to discourage the ants to take options which constitute parts of these solutions. 
 

3. ELITIST STRATEGIES 
 

In the ant system described in the previous section, all the ants contribute to the pheromone change 
calculation defined by Eq. (3). This means that options that have been selected before will have a higher 
chance of selection in future iterations. This pheromone updating rule is of a highly explorative nature. 
The exploitation, on the other hand, is only reflected in Eq. (4) where the pheromone change caused by 
better solutions is calculated to be higher than other solutions. The experience shows, however, that the 
exploitation introduced into the method by Eq. (4) is not enough to balance the exploration present in the 
algorithm. This is usually reflected in slower convergence of the method or convergence to the sub-
optimal solutions depending on the value of the evaporation factor used. Different methods are suggested 
to regulate a trade-off between the exploitation of the best solutions (iteration-best and global-best) and 
further exploration of the solution space. Dorigo and Gambardella [7] presented Any Colony System 
(ACS), which includes additional rules that probabilistically determine whether an ant is to act in an 
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exploitative or explorative manner at each decision point. Another mechanism used within ACS is the 
local updating of the pheromone of an ant's selected options immediately after it has generated its solution, 
such that the reselection of options within an iteration is discouraged, leading to further exploration of the 
method. The global updating rule in ACS is similar to that in AS, but in ACS only the path with the 
global-best solution receives additional pheromone. This updating rule clearly acts as an encouragement 
for exploitation as only the best solution is reinforced with additional pheromone. To exploit information 
about the global-best solution, Dorigo et al. [1] proposed the use of an algorithm known as Elitist Ant 
System (ASelite). The updating rule in ASelite is the same as that of AS, except that in ASelite the global-best 
ant is also allowed to contribute to the pheromone change σ time at each iteration. The updating rule for 
ASelite encourages both exploration, as each of the m solutions found by the colony receive a pheromone 
addition, and exploitation, as the global-best path is reinforced with the greatest amount of pheromone. 
As ∞→σ , the emphasis on exploitation is greater. Another method further developing the idea of elitism 
is the elitist-Rank Ant System (ASrank) proposed by Bullnheimer et al. [6], which involves a rank-based 
updating scheme. At the end of an iteration, σ elitist ants reinforce the current global-best path, as in 
ASelite, and the ants that found the top σ-1 solutions within the iteration add pheromone to their paths with 
a scaling factor related to the rank of their solution. The decision rule for the ASrank is the same as that for 
AS.  
 

4. MAX-MIN ANT SYSTEM 
 

Max-Min Ant System (MMAS) suggested by Stutzle and Hoos [9] is yet another method which employs 
the idea of elitism to introduce exploitation into the original ant system. The provision of exploitation is 
made in MMAS by the addition of pheromone to only the iteration-best ant's path at the end of each 
iteration. To further exploit good information, MMAS uses the global-best solution to update the 
pheromone trail at every Tgb iterations. The MMAS updating scheme is then given by:  
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where, N is the set of natural numbers and )(tib

ijτΔ  and )(tgb
ijτΔ are the pheromone addition given by the 

iteration-best and global-best ants, respectively.  
Premature convergence to sub-optimal solutions is an issue that can be experienced by all ACO 

algorithms, especially those that use an elitist strategy of pheromone updating. To overcome this problem 
whilst still allowing for exploitation, Stutzle and Hoos [9] proposed the provision of dynamically evolving 
bounds on the pheromone trail intensities such that the pheromone intensity on all paths is always within a 
specified range. As a result, all paths will have a non-trivial probability of being selected and thus wider 
exploration of the search space is encouraged.  MMAS uses upper and lower bounds to ensure that 
pheromone intensities lie within a given range which is calculated based on some analytical reasoning. 
The upper pheromone bound at iteration t is given by [9]: 
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This expression is equivalent to the asymptotic pheromone limit of an option receiving the pheromone 

addition of gbfR )(ϕ and decaying by a factor of ρ−1  at the end of each iteration. The upper bound as 
defined in Eq. (6) was found to be of lesser importance, while the lower limit played a more decisive role. 
Stutzle and Hoos [9] introduced the following formula for the calculation of the lower trail strength limit 
based on some analytical arguments: 
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where minτ  represents the lower limit for the pheromone trail strength; decp is the probability that an ant 
constructs each component of the best solution again; bestp  is the probability that the best solution is 
constructed again and Javg is the average number of options available at the decision points of the problem. 
MMAS as formulated in Stutzle and Hoos [9], also incorporates another mechanism known as pheromone 
trail smoothing (PTS). This mechanism reduces the relative difference between the pheromone intensities, 
and encourages further exploration. The PTS operation performed at the end of each iteration is given by 

 
))t()t(()t()t( ijmaxijij ττδττ −+→                                                       (8) 

 
where 10 ≤≤ δ  is the PTS coefficient. If 0=δ  the PTS mechanism has no effect, whereas if 1=δ  all 
pheromone trails are scaled up to )(max tτ . In addition to these additional mechanisms, MMAS uses the 
same decision policy as AS.  
 

5. PIPE NETWORK OPTIMIZATION 
 

Due to the high costs associated with pipe networks, much research over the last decades has been 
dedicated to the development of methods to minimize the capital costs associated with such infrastructure. 
Within the last decade, many researchers have shifted the focus of pipe network optimization from 
traditional techniques based on linear and nonlinear programming to the implementation of heuristic 
methods derived from nature namely: genetic algorithm (GAs) [11-16], simulated annealing [17], and ant 
colony optimization (ACO) [10,18-21]. The pipe network optimization problem in its simplest form is 
defined as selecting the diameter of each pipe of the network so that the resulting network has a minimum 
cost, while meeting the required conditions. These conditions are often considered as pipe velocities and 
nodal pressures remaining in a pre-specified range defined by maximum and minimum velocity and 
pressure values. Here, each pipe is a decision point at which the diameter of the pipe is to be determined. 
The component of the decision set D ={ }ni21 d,..,d,..d,d  is, therefore, the existing pipes of the network, 
where di  represents the ith pipe of the network. The pipe diameters are usually selected from a set of 
commercially available diameters φ ={ }ijϕ  which may or may not be the same for all the pipes. Assuming 
that these diameters are the same for all the pipes, then  φ= ),....,,( J21 ϕϕϕ  would represent the list of 
available options at each and every decision point of the problem. If ucj is defined as the per unit length 
cost of the pipe with diameter jϕ , the cost cij associated to the option φj at decision point di can now be 
calculated as the product of the per unit cost ucj and the length lei of the link under consideration.  The 
cost of a trial solution f(φ) which may or may not be a feasible solution, is now calculated as the sum of 
the links cost given by  
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in which n and nn is the number of existing pipes and nodes, respectively; inH  is the nodal head; minH  
and maxH  are minimum and maximum allowable hydraulic head; iV  is the pipe velocity; minV and 

maxV are minimum  and maximum allowable flow velocity; CSV represents a measure of the head and flow 
constraint violation of the trial solution and αp is the penalty parameter with a large enough value to ensure 
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that any infeasible solution will have a higher total cost than any feasible solution. It should be noted that 
in calculating the CSV, the summation ranges over those nodes and pipes at which a violation of pressure 
and velocity constraints occurs, ie; the terms in parenthesis are positive. Here, the penalty parameter is 
taken as the cost of the most expensive network, ie; a network with all its pipes having the largest possible 
diameter. For a given network, the nodal pressures and pipe velocities are obtained via the use of a 
simulation program that explicitly solves the set of hydraulic constraints for nodal heads [22]. This, 
however, requires the definition of some parameters in the Hazen-Williams equation which states the 
relation between head loss and flow in each link. Here, a Hazen-Williams formula of the type 

 
γλμ −= D

C
QLh f )(                                                                    (11) 

 
is used, in which L = length of a pipe; Q = flow rate of a pipe; C = Hazen-Williams coefficient, D = 
internal diameter of a pipe and:   λ= 1.852, γ = 4.871, µ = 10.667 for Q in cubic meter per hour and D in 
inch (equivalent to μ = 4.727 for D in feet and Q in cubic feet per second) are Hazen –Williams constants 
as used in EPANET 2.0.   
 

6. PROPOSED COLONY-MUTATED ANT SYSTEM (CMAS) 
 

MMAS, as defined above, suffers from some shortcomings. Firstly, the argument behind MMAS is based 
on the strong assumption that around good solutions other good or even better solutions are located. This 
is definitely the case for TSP, the problem for which the MMAS is proposed as it is shown that reasonably 
good tours are located in a small region of the search space. This is not necessarily true for other problems 
such as pipe network optimization problems in which good solutions may be surrounded by costly 
infeasible solutions. The second is that the trail limits, and in particular the lower limit, used in MMAS 
will effectively come into play when a best found solution dominates the colony to encourage the ant to 
create some other solutions using the components of this solution. When an elitist strategy is used for 
pheromone updating, the trail intensities on all the options available at an arbitrary decision point is nearly 
zero except for the option corresponding to the best found solution. MMAS calculates the lower bound of 
the trail intensities for a given value of bestp and raises the near-zero value of all options to this value. At 
this moment, all the options except one will have the same non-zero trail intensity. This will, of course, 
increase the chance of other options to constitute part of the next iteration solutions, but in a random 
fashion. The ants will be required to take a random walk in an artificially widened search space around the 
dominating solution. And finally, the MMAS introduces some additional free parameters such as bestp , 
Tgb, and δ in addition to Q,,, ρβα  and m which are used by all ACO algorithms. While some heuristics 
are derived for the second set of parameters [20], the setting of the second set is subject to trial and error. 
The value of these parameters should be tuned for the best performance of the algorithm prior to the main 
application of the method. This, of course, adds to the computational requirement of MMAS compared to 
that of the original ant system. 

To introduce the proposed method, first consider the role of the additional parameters bestp , Tgb, and 
δ used in MMAS. Parameters bestp and δ are both meant to introduce exploration into the algorithm as 
defined earlier. The exploration increases with the decreasing value of bestp  and the increasing value of δ. 
These parameters are not, however, independent.  Assuming that the PTS operation defined by Eq. (8) is 
followed by the implementation of  Eq. (7) using predefined bestp , then it is highly probable that for large 
enough values of PTS parameter, δ, the smoothed pheromone trails calculated by Eq. (8) are higher than 
the lower bound minτ defined by Eq. (7), leading to the redundancy of this equation. If, on the other hand, 
the PTS operation is preceded by the implementation of  bestp , then the PTS mechanism leads to a mere 
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constant scaling of the calculated minimum pheromone trails minτ on the options which do not constitute a 
part of the dominating solution. This effect can be clearly achieved by using a lower value of  bestp  
without having to use PTS mechanism. It can therefore be argued that only one of these two mechanisms 
is needed to introduce the required exploration into MMAS. The parameter bestp  has the advantage of 
easier setting as it carries a physical meaning, ie; the probability that the best solution is created by all 
ants. It is therefore reasonable to disregard the PTS operation by assuming a value of zero for δ and only 
tune  bestp  for balancing the exploitation and exploration of the MMAS.  

Now consider the effect of Tgb as used in Eq. (5). This equation states that the global-best path should 
be reinforced every Tgb iteration. For a very large value of this parameter, only iteration-best solutions are 
used to update the pheromone trail. In this situation it is possible that the search does not converge on a 
single solution or otherwise converge to a solution different from the global-best solution, depending on 
the value of evaporation factor ρ used. For the values of ρ close to 1.0, MMAS may fail to converge and 
for small enough values of ρ the stagnation at sub-optimal solution may occur. In the first case, 
implementation of  Eq. (7) will be redundant since this mechanism comes into effect when stagnation 
starts to take place. Implementation of  Eq. (7) in the second case will  lead to a search around a sub-
optimal solution which will clearly be inefficient. Small values of Tgb with a minimum value of one result 
in higher exploitation of the global-best solution, which is often reflected in the colony being dominated 
by the current global-best solution. In other words, the role of the Tgb is merely to ensure that the path with 
maximum pheromone intensity corresponds to the current global-best solution at all stages of the search.  

The proposed Colony-Mutated Ant System (CMAS), which uses the same decision policy as that of 
AS and an elitist pheromone updating rule in which only iteration-best solutions are reinforced at each 
iteration, introduces a new balancing exploitation and exploration mechanism. As an exploitation 
mechanism which ensures that the algorithm only converges to the GBS, CMAS uses a simple but 
effective parameter-free Pheromone Replacement Mechanism (PRM) in which the pheromone intensity of 
the GBS is replaced with that of the path defined by the maximum pheromone intensity and vice versa 
whenever a new GBS is located. This will guarantee that the current global-best solution has the 
maximum pheromone trail and, therefore, has a very high chance of being selected as the iteration-best 
solution of the iteration to be used in the pheromone updating process.  

The proposed CMAS uses an explorative feature to balance the exploitation embedded in the 
algorithm via use of PRM to replace the lower bound scaling (Eq. (7)) of MMAS. This is achieved using 
the mutation mechanism commonly used in GAs on the colony created at each iteration once the 
stagnation is started. Two mutation procedure, one bit-wise and the other uniform mutation, are introduced 
and used here. In the first one, a one-bit mutation is carried out with a probability Pm defined as 
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m(1P
gb
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m −=                                                                      (12) 

 
While in the second method, the colony undergo a uniform mutation with a probability Pm defined as 
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where n denotes the number of decision points of the problem; m is the colony size as defined earlier; Pgb 
is the ratio of the number of global-best solutions surviving the mutation to the colony size defined by the 
user and Mgb is the number of global-best solutions created by the ants at the current iteration. The 
probability of mutations so calculated ensures that, on average, m.Pgb of global-best solutions survive the 



Colony-mutated ant system for… 
 

August 2011                                                                                IJST, Transactions of Civil Engineering, Volume 35, Number C2       

225

mutation process. It can be seen that the mutation mechanism is activated only when Mgb> m.Pgb in both of 
the methods. It should be noted that Pgb carries a meaning similar to that of Pbest used in MMAS. 
 

7. TEST EXAMPLE 
 

The test problem considered here concerns the rehabilitation of the New York City water supply network 
with 21 pipes, 20 demand nodes, and one reservoir as shown in Fig. 1 [11]. The commercially available 
pipe diameters and their respective costs are listed in Table 1 while the pipe and nodal data of the existing 
network are shown in Table 2. The last column of the table represents the minimum head requirement at 
each node corresponding to the minimum pressure of 30 meters. The minimum head requirement is the 
only constraint of the problem as defined in Dandy et al. [11]. This table is augmented by a virtual zero-
diameter cost equal to the half of the cheapest diameter to enable the calculation of local heuristics for all 
available options. This problem has been used as a case study by many researchers using genetic 
algorithm [11-16, 23] and most recently by Maier et al. [18]; Zecchin et al [19, 20] and Afshar [10, 21] 
using ACO algorithms.  
 

  
Fig.1. New York tunnel network 

 
Table 1. Pipe cost data for New York network 

Diameter (inch) 0 36 48 60 72 84 96 108 

Cost ($/ft) 0 93.5 134.0 176.0 221.0 267.0 316.0 365.0 

Diameter (inch) 120 132 144 156 168 180 192 204 

Cost ($/ft) 417.0 469.0 522.0 577.0 632.0 689.0 746.0 804.0 

 



M. H. Afshar 
 

IJST, Transactions of Civil Engineering, Volume 35, Number C2                                                                                August 2011 

226 

Table 2. Pipe and nodal data for New York tunnel network. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
To pave the way for the introduction and implementation of the proposed CMAS on the test example, a 
series of experiments are carried out to assess the effect of MMAS parameters on its performance as 
described previously. 

An experiment is first carried out to verify the role of Tgb in MMAS described previously. The 
example problem is solved with different values of Tgb=1,10, and ∞ for fixed values of other parameters 

50,98.0,25.0,1 ==== mρβα and 0.1=bestp . These values are chosen following heuristics 
suggested by Zecchin et al. [20] and some preliminary runs. Figures 2 to 5 show the variation of the 
averaged number of global-best solutions (GBS) and maximum pheromone intensity solutions (MPIS) 
during the search process for different values of Tgb obtained from ten runs using different initial colonies. 
It is clearly seen from Fig. 2 that for a large value of Tgb=∞, the number of GBS and MPIS are different 
during the search process. The difference increases as the solution corresponding to the maximum 
pheromone intensity dominates the colony. This difference indicates that a pheromone updating rule 
which only uses iteration-best solutions may lead to domination of a solution different from the global-
best solution. It is obvious that implementation of Eq. (7) with bestp <1 will be inefficient in this situation. 
The difference between the number of GBS and MPIS decreases with the decreasing value of Tgb as 
illustrated in Figs. 3 and 4. It can, therefore, be argued that the main effect of reinforcing the global-best 
path in MMAS is to make sure that the solution corresponding to maximum pheromone intensity is the 
current global-best solution of the search. In this situation, implementation of Eq. (7) with bestp <1 will 
result in a colony of solutions constructed on and around the global-best solution of the search. This, of 
course increases the chance of improving the current GBS compared to a situation in which the colony is 
constructed on and around an inferior solution, a situation which happens for larger values of Tgb . It is 
also instructive to note that small values of Tgb (reinforcing the global-best path more often) will result in 
more exploitation which is reflected in faster stagnation of the search, an effect similar to that expected 
from evaporation factor. This means that both the evaporation factor ρ and Tgb play an exploitative role in 
MMAS. A successful implementation of the algorithm, therefore, requires a careful tuning of these 

Pipe data Nodal  data 
Pipe Start Node End Node Length 

(m) 
Existing Diameter 

(mm) 
Node Demand 

(l/s) 
Min.  Head 

 (m) 
1 1 2 3535.6 4572 1 reservoir        91.4 
2 2 3 6035.0 4572 2 2616 77.72 
3 3 4 2225.0 4572 3 2616 77.72 
4 4 5 2529.8 4572 4 2497 77.72 
5 5 6 2621.2 4572 5 2497 77.72 
6 6 7 5821.6 4572 6 2497 77.72 
7 7 8 2926.0 3353 7 2497 77.72 
8 8 9 3810.0 3353 8 2497 77.72 
9 9 10 2926.0 4572 9 4813 77.72 

10 11 9 3413.7 5182 10 28 77.72 
11 12 11 4419.6 5182 11 4813 77.72 
12 13 12 3718.5 5182 12 3315 77.72 
13 14 13 7345.6 5182 13 3315 77.72 
14 15 14 6431.2 5182 14 2616 77.72 
15 1 15 4724.4 5182 15 2616 77.72 
16 10 17 8046.7 1829 16 4813      79.25 
17 12 18 9509.7 1829 17 1628      83.15 
18 18 19 7315.2 1524 18 3315 77.72 
19 11 20 4389.1 1524 19 3315 77.72 
20 20 16 11704.3 1524 20 4813 77.72 
21 9 16 8046.7 1829    
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parameters to ensure that a) the colony have enough time to explore the search space before domination of 
MPIS and b) the MPIS is the same as GBS so that the colony is dominated by the current GBS and not any 
other inferior solution.  
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Fig. 2. Variation of the average number of GBS and MPIS with the number of iterations for ten runs (Tgb=∞) 
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Fig. 3. Variation of the average number of GBS and MPIS with the number of iterations for ten runs (Tgb=10) 
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Fig. 4. Variation of the average number of GBS and MPIS with the number of iterations for ten runs (Tgb=1) 
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Fig. 5. Variation of the average GBS cost for different values of Tgb 

 
It is instructive to see the performances of MMAS for different values of parameter Tgb. Fig. 5 shows 

the variation of the average GBS costs of ten runs using different initial colonies for Tgb=1,10, ∞ 
and bestp =0.05. The best performance of the MMAS is achieved for Tgb=10  in terms of convergence 
characteristics and the quality of the solution. The algorithm shows the worst performance for Tgb=1 due to 
higher exploitation, which is not balanced by the exploration introduced via use of bestp =0.05. MMAS 
using Tgb= ∞ shows not only inferior, though close, convergence behavior to MMAS using Tgb= 10, but 
also a lower success rate of 1 in ten runs in locating the global solution of the problem, with a cost of 
$38.63M, compared to the success rate of 3 achieved by the latter. This can be attributed to the fact that in 
the latter case, the maximum pheromone intensity path does not correspond to the GBS in all the ten runs 
as shown earlier in Fig. 2. To complete the observations, another experiment is carried out to examine the 
convergence behavior of the MMAS algorithm for ρ =1 , bestp =1 and Tgb= 1,10 and ∞. The results, not 
shown here, indicated that irrespective of the level of exploitation, regarding the value of Tgb, the 
algorithm is not convergent when no evaporation is present ( ρ =1). For all values of Tgb used, the average 
number of GBS and MPIS was always below 2% of the colony size at all stages of the search. It is obvious 
that the introduction of further exploration via implementation of Eq. (7) with bestp <1 will be redundant 
in this situation. It can, therefore, be argued that in MMAS, the evaporation ( ρ <1) guarantees the 
convergence, reinforcement of GBS with a proper value of Tgb, ensures that the algorithm converges on 
the GBS and, finally, the adjustment of the lower pheromone bound with bestp <1 enlarges the search 
space around the GBS providing the opportunity for the ants to further improve the current GBS. 

An experiment is now carried out to verify the effectiveness of the proposed PRM. Figure 6 shows the 
average number of GBS and MPIS of ten runs versus the number of iterations for three values of 
evaporation factor ρ=1, 0.995, and 0.99 with other parameters chosen as 50m,25.0,1 === βα , and 

0.1=bestp . It should be noted that each curve in Fig. 6 is representative of both the number of GBS and 
MPIS as these have been found to be virtually the same. It is interestingly seen that the PRM introduces 
enough exploitation into the algorithm, even when no evaporation, ρ=1, is introduced into the algorithm. 
The algorithm shows faster stagnation with decreasing values of evaporation factor as expected. The 
algorithm, however, has enough chance to explore the search space before stagnation starts when no 
evaporation is used. The proposed PRM seems to be very advantageous as it simulates the effect of both 
GBS reinforcement and evaporation without introducing any free parameter. It can, therefore, be expected 
that PRM with little or no evaporation perform better as the resulting search process will have enough 
time to explore the search space before stagnating at the current global-best solution. This expectation is 
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indeed fulfilled as shown in Fig. 7 where the average GBS cost is seen to decrease with the increasing 
value of the evaporation factor. The minimum average solution cost, in fact, is obtained when no 
evaporation is used. The proposed PRM, therefore, ensures enough exploitation and convergence of the 
method to the GBS solution irrespective of the amount of evaporation used. The averaged GBS costs and 
the success rate of the algorithm for the values of evaporation factor ρ=1, 0.995, and 0.99 were ($39.61M, 
2), ($39.82M, 1), and ($39.93M, 1), respectively. 
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Fig. 6. Variation of the average number of GBS during the search for different values of 

 evaporation factor using PRM 
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Fig. 7. Variation of the average GBS cost for different values of evaporation factor using PRM 

  
The final experiment is now carried out to verify the efficiency of the proposed mutation mechanisms. 

Figure 8 compares the variation of the average GBS cost using first and second mutation mechanisms 
denoted by CMAS1 and CMAS2, respectively, with that of the best performing MMAS. CMAS results 
were obtained using five parameter values 50m,05.0P,0.1,25.0,1 gb ===== ρβα , while MMAS 
required the tuning of six parameters as: 50m,05.0p,10T,98.0,25.0,1 bestgb ====== ρβα . 
Considering the exploitative behavior of CMAS with no evaporation, there is actually no need to tune for 
the evaporation factor. The number of free parameters of EMAS, therefore, reduces to four compared to 
six for MMAS. 
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Fig. 8. Variation of the average GBS cost for the best performing MMAS and proposed CMAS 

 
It is seen that the average GBS cost obtained by both CMAS1 ($39.03M) and CMAS2 ($39.00M) is 

considerably superior to that of MMAS ($39.32M). The CMAS1, however, showed a higher success rate 
of 4 out of ten in locating the optimum solution of $38.64M compared to that of 3 out of ten for MMAS, 
while CMAS2 showed a poorer performance with a success rate of 2 out of ten. It is obvious that the 
mutations introduced are responsible for improving the average GBS cost and the success rate of the PRM 
from ($39.61M,2)  to ($39.03M,4) and ($39.00M,2) obtained by the CMAS1 and CMAS2, respectively. It 
is also instructive to compare the number of average global-best solutions for three algorithms as shown in 
Fig. 9. It is clearly seen that both of the mutation mechanisms used in CMAS were successful to control 
the number of GBS around m.Pgb=2.5, while this number is very high for MMAS. This is, in fact, another 
feature of the proposed CMAS, enabling the method to compete with MMAS using fewer tuning 
parameters. The proposed CMAS is therefore computationally less demanding than MMAS while 
producing comparable results. 
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Fig. 9. Variation of average number of GBS for best performing MMAS and proposed CMAS 

 
The experiments carried out on the test example shows that the advantages of the proposed CMAS 

over the commonly used MMAS is threefold. First, the proposed method has shown overall better 
performance than the MMAS by producing lower cost solutions in ten runs. In fact, the CMAS1 and 
CMAS2 were able to produce the best solution with average costs of $39.03M and $39.00M, respectively 
compared to the averaged best solution cost of $39.32M obtained by MMAS. It should, however, be noted 
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that all methods have been able to produce the known optimal solution of $38.64M for the test example 
[11]. The second advantage of the proposed method over the MMAS lies in its convergence rate, as 
evident from Fig. 8. In fact, all the ten runs carried out by the CMAS1 and CMAS2 converged within 
15350 and 13850 function evaluations, respectively, while the MMAS required the maximum number of 
function evaluations of 20000 to converge. This emphasizes the efficiency of the proposed CMAS 
compared to MMAS. And finally, the proposed CMAS methods only require the proper value for the four 
free parameters of m,P,, gbβα  compared to the six free parameters of m,p,T,,, bestgbρβα required by 
the MMAS. This means the proposed CMAS methods require less computational effort for tuning the free 
parameters of the method compared to the MMAS. 
 

8. CONCLUDING REMARKS 
 

A new ACO algorithm was presented as an alternative to the Max-Min Ant System. The method exploits 
automatically balanced exploitative and explorative features. The exploitation of the method is provided 
by a simple but effective free-parameter procedure in which the global-best solution pheromone intensity 
is replaced by the current maximum pheromone trail each time the global-best solution is updated. This 
procedure was shown to introduce enough exploitation into the method ensuring the convergence of the 
search to the global-best solution, irrespective of the value of the evaporation factor. The method offers 
the advantage of exactly predicting the number of global-best solutions of the iteration without the 
necessity of calculating the cost function of the trial solutions. Two mutation mechanisms were then used 
on the colony at each iteration to introduce balancing exploration into the algorithm. The first mutation 
mechanism uses a one-bit mutation, while a uniform mutation is used in the second one. The probability 
of mutations are adjusted at each iteration such that a predefined number of global-best solution, survive 
the mutation process. The proposed algorithm was tested against a benchmark example in the water 
distribution network optimization literature and the results compared with that of MMAS. The results 
show that the proposed algorithm produces solutions comparable to those of MMAS, while introducing 
fewer free parameters to be tuned.  
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