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Abstract– In this paper, structures transformable to regular forms are studied. Here, two cases are 
investigated. In the first case, the effect of different boundary conditions on these structures are 
explored, and in the second case the effect of adding or removing members and nodes are studied. 
In some structures the graph model is regular and different boundary conditions change the 
corresponding block matrices into non-regular ones. In some other structures the addition or 
removal of nodes and/or members changes the structure into a regular one. Here an efficient 
method is presented for dealing with the above-mentioned irregularities. 

The main idea steams from the fact that on the one hand there exist simple relationships for 
finding the inverse of some block matrices related to regular structures, and on the other hand we 
want to find out how to obtain the inverse of matrices corresponding to structures which become 
regular by the addition or removal of some members and/or nodes. 

One of the applications of the present method is related to the finite difference (FD) method 
for the analysis of plates with some irregularities in their boundary or having different support 
conditions.           
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1. INTRODUCTION 
 

Most of the research results presented in the past on regular graphs belong to the eigensolution of their 
matrices. A structure is called regular if it can be represented as a product graph [1-3]. In these methods, 
the calculations can be performed using the theorems of Refs. [4-5]. When a node (or a set of nodes) and 
the connected members are added to regular structures, the corresponding matrices can still be considered 
as the sum of some Kroneker products, the problem can be solved provided the symmetry of the structure 
is maintained [6]. In general, the regular structures are studied from the point of view of having repetitive 
units or symmetry [7-9]. In reference [10] using QZ  decomposition, a method has been presented to 
calculate the inverse of those matrices which are in the form of the sum of two Kronecker products. In the 
general case, one may come to structures which cannot be considered regular with regard to their graph 
models, however, by adding or deleting a few nodes and/or members these can be changed into the 
previously solved forms. Here, it will be shown that this addition or deletion need not preserve the 
symmetry of the structure. 

The problem of inverting matrices associated with modified regular structures can be treated more 
efficiently using an approach that takes into account the solutions of well-formed matrices of the main 
regular structures. Here a well-formed matrix is defined as a matrix with a canonical form for which the 
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inversion is carried out using much simpler formulations. Using such an approach one may consider 
various types of modifications. For example, different boundary conditions can be treated using this 
method. Also, in the analysis of some structures such as plates with irregular boundaries using the FD 
method, the present approach can be efficiently used employing the solution of the plate with regular 
configuration.  

In what follows, first the method for calculating the inverse of block matrices is discussed and then a 
method is presented for finding the inverse of those matrices which are transformable to regular ones. 
Finally, the application of this method is illustrated through some examples. 
 

2. INVERSION OF BLOCK MATRICES 
 
First, it should be noted that in matrix algebra the inverse of a block matrix can be obtained in terms of the 
inverse of its blocks by a special formulation. However, such an operation requires the inversion of the 
blocks involved. Here we will observe that considering the eigenvalues and eigenvectors of block matrices 
[4-5], such calculation can be simplified. 

Suppose the form of the matrix to be investigated is as follows: 
 

2211mnM BABA                                                         (1) 
 
where n is the dimension of the matrices 1A  and 2A , and m is the dimension of the matrices 1B  and 2B . 
The sign   shows the Kronecker product of two matrices and it is defined in the Appendix. We consider 
two cases. In the first case, 1221 AAAA  , then using the eigenvalues the inverse of M  can easily be 
obtained. In the second case, 1221 AAAA   and we should use QZ  factorization. 

In the first case, the two matrices 1A  and 2A  commute with respect to multiplication, and one can 
find the eigenvalues using the following relationship: 
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It is obvious that if V is the matrix containing the eigenvectors and D  is a diagonal matrix containing the 
eigenvalues of a symmetric matrix M , then we will have tVDVM  . Since the eigenvalues of 1M  are 
the inverse of those of M  and the eigenvectors are identical, therefore 
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Where 1D  can easily be obtained by inverting the diagonal entries of D . The eigenvector of such a 
matrix will be in the form of vu  in which u  is a vector that diagonalizes both matrices 1A  and 2A  
simultaneously and v  which is an eigenvector of 22i11ii )()( BAλBAλM   as discussed in [11]. 

In the second case, if 1A  and 2A  do not commute with respect to multiplication, then QZ  
decomposition should be used. This decomposition is introduced in [7] and here only the inverting process 
is re-introduced. 

In this case, consider y = Mx, where M has the form of Eq. (1). Natural approach will lead to x = 
M1y. Here, one can use QZ  decomposition [12]. However, instead of inversion, we consider appropriate 
transformations to make M a diagonal matrix and inversion can then be achieved by inverting the diagonal 
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entries. For this purpose, decomposition should be performed such that instead of T, we end up with a 
diagonal D. We use QZ  decomposition as 
 

)diag(  ,  )diag(        BA
B

A TT
QBZT

QAZT
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
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




                                      (4) 

 
 and  are the entries on the main diagonal of TA and TB, respectively. 

Substitute U = K1 with the following: 
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then unlike the previous case we have tZV  , but tQU   and UAV is a diagonal matrix: 
 

xBABAy )( 2211                                                      (6) 
Considering 
 

4B2B3B1B2A2A1A1A   ,    ,    ,  DVBUDVBUDVAUDVAU                        (7) 
 
We have 

xBABAUUyUU ))(()( 2211BABA                                (8) 
 
Substituting 

yUUyxVVx )(     ,)( BABA                                        (9) 
 
We have 

xDDDDy )( 4231                                                (10) 
 
Having y, y  can be calculated and since the matrix in prentices is diagonal, x  and then x can be 
calculated. It should be noted that in using these transformations, the calculations are performed on 1A , 

2A , 1B  and 2B  having dimensions similar to that of the repetitive blocks. Thus the amount of calculations 
is reduced considerably. 
 

3. PROPOSED METHOD 
 
Most of the research results presented in the past were concentrated on structural forms having support 
conditions for which the structural matrices could be expressed as the sum of some Kronecker products. In 
such cases using the corresponding theorems one can simplify the calculations using the block matrices. In 
general a structure can have supports leading to non-regular forms which make these calculations 
impossible. The structure can also have a geometry which can be transformed into regular models by 
adding some members and nodes. The main aim of this paper is to study such cases and, as an example, 
the calculations will be performed on the matrices corresponding to FD solutions. 
 
a) The effect of different boundary conditions 
 

In order to clarify the problem, suppose that we want to calculate the maximum deflection of the 
plate shown in Fig. 1. This plate is uniformly loaded and it is simply supported in three edges and clamed 
in the other edge. This problem is solved in Ref. [11] for the case where the plate is simply supported in its 
four sides. 

The governing equation for this problem is as follows [13]: 
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If the length of the subdivisions in both directions is taken as h, for a typical joint (i,j), we will have 
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Fig. 1. A plate with simple supports in three edges and clapped in one edge under a uniform loading 

 
In this example, the central FD operator is used. Any other FD operator or numerical method can be 

employed, however, the matrix corresponding to its graph model should fulfill the commutativity 
condition  1 2 2 1A A A A . Since in the central FD operator for the second-order partial differential 
equation every node is connected to its 4 adjacent nodes at the top, bottom, left and right, the graph of the 
model is in the form of the Cartesian product of two paths. As it is shown in Refs. [4, 5], since for this 
graph the above commutativity condition holds, it can be decomposed. As an example, the matrix 
corresponding to the fourth-order partial differential equation that uses Eq. (12), satisfies the 
commutativity condition. Therefore the present method is applicable only when firstly the corresponding 
model is regular, and secondly the nodal numbering is performed such that the decomposibility condition 
is not violated. 

It should be noted that the nodal numbering is performed such that the nodes corresponding to the 
clamed supports and the corresponding nodes in the other side of the plate are first numbered, followed by 
the numbering of the remaining nodes. As an example, if we consider the numbers of subdivisions in the 
X and Y directions as 7 and 6, respectively, the nodal numbering should be performed as illustrated in Fig. 
2. In this way writing the FD equations and imposing the boundary conditions, we will obtain the 
following matrix: 
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where the decomposed submatrices are as follows: 
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Fig. 2. Nodal numbering of the plate for the FD method 
 
Where I is a unit matrix and 
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if the 4th argument of F is not present, then the above matrix becomes a block tri-diagonal matrix. 

Considering the different boundary conditions and using the above-mentioned nodal numbering, one 
can observe repetitive block forms in all the submatrices (even in the submatrix tCC 1221   which is a 
rectangular matrix) 

Therefore, solving Eq. (13) in block form we will have: 
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It can be seen that in these relationships we do not need to find the inverse of 21

1
221211 CCCC   and 22C . 

The important point is that, as can be seen the inverse of 11C  and 22C  can easily be found and we need 
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only to invert 21
1

221211 CCCC   which is a matrix with identical dimensions to that of 11C . Since in most of 
the numerical methods like FD the number of subdivisions is generally high, the dimension of the matrix 

11C  is less than that of 22C , and from the second row, the matrix 2w  should be calculated, otherwise we 
should first calculate 1w . 

Now we consider the inversion of 11C  and 22C  matrices. These matrices are block five-diagonal 
matrices. As an example, the inverse of 22C  can be expressed as 
 

ii
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Since we have three Kroneker products, QZ  transformation of inversion cannot be used. However, since 

ijji AAAA   we first use Eq. (2) and obtain 
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The vector u  which diagonalizes the three matrices 5I , )0,1,0(F  and )1,1,0,0(F  simultaneously will then 
be calculated followed by the vector v , i.e. the eigenvector of IFBFAM iii ))1,1,0,0(())0,1,0((   . 
The columns of the matrix V  are equal to vu  . In this way, using Eq. (3), the 1

22
C  will be obtained. 

In relation to 22C  it is important to note that this matrix is exactly the same as the matrix we had for 
the plate with 4 edges being simply supported. In fact, the role of different support conditions is reflected 
in 11C  and tCC 1221  . 

For inverting the submatrix 11C  a similar calculation can be carried out. If we only want to calculate 
the moments, we have to adopt a similar process. In this case, we will have block tri-diagonal matrix 
which can be expressed as the sum of two Kronecker products and the process of calculation will not be 
different. 
 
b) Structures transformable to regular forms 
 

In the following we study the analysis of plates. In general, one needs to calculate the moments and 
deflection of the plates where its geometry can be changed into regular figures by adding or deleting some 
parts. Then using the FD method and after writing the corresponding equations for the regular plate, the 
results of the main plate are obtained. 

As an example, we want to calculate the moments and deflection of the plate in Fig. 3a. This plate is 
pinned at its boundary nodes. For solution FD method is employed. As can be seen, for simplicity and 
because of the irregularity of the plate, nine nodes are selected. Obviously for more irregularity the 
distance between the nodes should be reduced by increasing the number of subdivisions. 

First we transform the plate into a complete plate as shown in Fig. 3b, and with new numbering the 
inverse of the matrix of the FD equations of this plate can be calculated. 

The governing relationships for this problem are as follows: 
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By partitioning this matrix we have 
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which can be expressed as 
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Fig. 3. Completion of (a) as (b) for having a regular block matrix 

 
The governing relationships for this problem are as follows: 
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which can be expressed as 
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Here, 22H  corresponds to the added nodes (3 nodes) and 11H  corresponds to the remaining nodes. Thus 
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Combining these two equations leads to 
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Ultimately the deflection of the plate is obtained as 
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where )1(12/ 23  EtD . 

In example 1, it can be seen that the selected grid for discretization of the plate for FD analysis has 
certain extra parts compared with a standard graph product. 
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The point is that, in some plates it is easier to consider it in the form of a sector of a circle in place of 
considering it as a rectangular model. Example 2 investigates a plate using this approach. 

In any case we should know that a rectangular or a sector of a circle can be inscribed in a circle or 
circumscribed, in both cases the calculations lead to the inversion of a matrix with dimension equal to the 
number of nodes added or deleted. As an example, in Fig. 4 for both irregular plates, in analysis by FD 
method, both cases of the plates inscribed in a circle or circumscribed by it are illustrated. 
 

  
Fig. 4. Transformation of two non-regular plates to regular rectangular- and  

sector of a circle-shaped plates 
 

4. NUMERICAL EXAMPLES 
 
Example 1: In this problem a plate descretized as shown in Fig. 5 for FD analysis, contains parts more 
that of a standard product graph. In the previous section we studied a plate smaller than its circumferential 
bigger plate, while here we create a regular product graph which is inside the plate. Partitioning the 
stiffness matrix of this plate into two parts, and having the inverse of the created product graph, the 
solution of the problem becomes feasible. 
 

 
Fig. 5. Reduction of (b) to obtain (a) for having a regular block matrix 

 
Here the equations are written for Fig. 5a and ultimately the results are obtained for Fig. 5b. The 

governing relationship here is as follows: 
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Therefore 
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Substituting 2M  in 1M , and due to the ease of inverting 11C , it is enough to find the inverse of a 

matrix having dimension equal to that of 22C , i.e. we calculate 1
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112122 ][  CCCC . 

Now we calculate the deflection as follows: 
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In this way the inverse of the same matrix ][ 12

1
112122 CCCC   which resulted in the bending moments is 

obtained for calculating the deflections. 
 
Example 2: Here, we study a plate which is convertible to the sector of a circle. As it can be seen from 
Fig. 6a, this plate can be converted into the quarter of a circle by adding some parts, and writing the finite 
difference equations in the polar coordinate system as developed in [14], it has become complete as shown 
in Fig. 6b. It should be noted that all the supports are pinned around the edges. 
 

 
(a) (b) 

Fig. 6. Completion of (a) to obtain (b) for having regular block matrix in polar coordinate system 
 

The finite difference matrix for the plate with hole in Fig. 6a is a 5 by 5 non-rectangular one. Adding 
3 nodes, the plate changes into a quarter of a circle having 8 nodes and the corresponding FD matrix take 
the form F  which can easily be inverted using Eq. (3). 
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In this way, using the relationships of Example 1, one needs to invert only a matrix of dimension 3 
corresponding to the added nodes. 

For some other applications of graph theory in structural mechanics the reader may refer to Refs. [15-
20]. 
 

5. CONCLUDING REMARKS 
 
The method presented in this paper extends the applications of the previous methods developed for the 
analysis of regular structures based on the stiffness method and some concepts from graph products. In 
some of the examples previously investigated, adding or removing some nodes and/or members changes 
the models into non-regular ones, or similarly the use of different support conditions may alter the 
repetitive nature of the corresponding block matrices. In such cases, first the matrices are partitioned in 
such a way that the effect of the support conditions and the remaining part of the structure are separated, 
and the analysis is performed using the regularity property. Thus the support conditions do not need to be 
regular and different supports can be present in the structure. 

In this paper, some relationships are developed for the inverse of a set of block matrices such that one 
can easily find the inverse of the matrix of a structure when it is transformable into a regular one. In 
general, two cases may arise. In the first case some nodes and members are added to regular structures, 
and in the second case some nodes and members are removed from a regular structure. The main idea is 
related to the modifications of structures. The present method results in a considerable reduction in 
computational time due to the decomposition of large matrices into smaller ones and using special 
methods for their inversion. As an application, the analysis of plates using FD method is performed, where 
moments and deflections of plates are calculated by transforming their configurations into regular models. 
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APPENDIX 

 
A.1 Definitions from Graph Theory 
 
A graph S(N,M) consists of a set of elements, N(S), called nodes and a set of elements, M(S), called edges 

(members), together with a relation of incidence which associates two distinct nodes with each edge, known as its 

ends. A subgraph Si of a graph S is a graph for which N(Si)  N(S) and M(Si)  M(S), and each edge of Si has the 

same ends as in S. A path graph P is a simple connected graph with N(P) = M(P)+1 that can be drawn in a way that 

all of its nodes and edges lie on a single straight line. A path graph with n nodes is denoted as Pn. A cycle graph is a 

simple connected graph with N(C) = M(C) that can be drawn in a manner that all of its nodes and edges lie on a 

circle. A cycle graph with n nodes is denoted as Cn. For further definitions and some application the reader may refer 

to Refs [15, 16].  
 
A.2 Kronecker Product 
 
The Kronecker product of two matrices A and B, is the matrix we get by replacing the ij-th entry of A by aijB, for all i 

and j. 

As an example, 

 





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







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














00

0001

11

dc

ba

dcdc

baba

dc

ba
 

 
 

(A-1) 

 
where entry 1 in the first matrix has been replaced by a complete copy of the second matrix. 
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The Kronecker product has the property that if B, C, D, and E are four matrices, such that BD and CE exists, then 

 (BC)(DE) = BDCE (A-2) 

Thus, if u and v are vectors of the correct dimensions, then 

 (BC)(uv) = BuCv (A-3) 

If u and v are eigenvectors of B and C, with eigenvalues  and , respectively, then 

 BuCv = uv (A-4) 

Whence uv is an eigenvector of BC with eigenvalue . 
 

 


