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Abstract– Earth retaining structures are referred to those structures which can control backfill 
heights that are just about to slide. Some examples of these structures are gravity and cantilever 
retaining walls. The cantilever retaining walls were utilized after the introduction of the 
reinforced-concrete construction technique. In the previous studies, the optimization of the 
retaining walls has been accomplished by quasi-static methods; however, in this paper a pseudo-
dynamic approach is utilized. The advantage of the pseudo-dynamic analysis is that the phase 
difference effects and time can be entered in the design of retaining walls as the dynamic 
characteristics of the earthquake loading. Here, by optimizing a cantilever retaining wall via a 
recently developed method, so-called Ray Optimization, the design controlling parameters are 
investigated. Ray Optimization method is a multi-agent optimization method which is inspired 
from the concept of light refraction. In this method by moving the agents to new positions, the 
optimal solution is found.           
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1. INTRODUCTION 
 

Earth retaining structures are referred to those structures which can control backfill heights that are just 
about to slide. These structures are used when the gravity retaining walls are uneconomical. Though the 
retaining walls are often out of sight of the public, like other tall building structures and bridges, they have 
an important role in the societies. 

If there is a mistake in the design of retaining walls, it causes a great deal of catastrophic damages. 
One can perform the analysis and design retaining walls by static, quasi-static, pseudo-dynamic and 
dynamic approaches. In order to design this structure by static approach, the Rankine or Coulomb theory 
can be utilized [1]. In this manner, the backfill thrust can be related to some coefficients, and ultimately 
using an equation, this pressure can be calculated.   Another method that can be used is the quasi-static 
methods. In the quasi-static approach, the transient earthquake force and static thrust are simultaneously 
imposed on the retaining wall as an equivalent static force. 

This method is based on the plasticity theory and is essentially an extension of the Coulomb sliding 
wedge theory. The pioneers of this method are Mononobe and Matsuo [2] and Okabe [3] and their work is 
known as Mononobe-Okabe method. In the quasi-static methods, the dynamic natural of the earthquake 
loading is considered to some extent. Now if one can consider some dynamic properties like phase 
difference effect and time in the backfill of the retaining walls, he or she will achieve a pseudo-dynamic 
approach. Methods like Steedman and Zeng [4] and Choudhury and Nimbalkar [5] are examples of this 
approach. The last method for the analysis and design of the retaining walls is dynamic one. The 
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performed analyses in this method are generally based on finite element method in the semi-infinite 
environment, thus because of high computational time, dynamic method is generally utilized for scientific 
purposes [6]. 

To obtain a design with minimum cost and time consumption, optimization methods must be used. 
For examples Kaveh and Behnam [7] used Charged System Search algorithm for optimization of gravity 
retaining walls, and Kaveh and Shakouri [8] employed harmony search algorithm for optimization of 
cantilever retaining walls. Both of these works use quasi-static approach for determining the active earth 
pressure behind the retaining walls. However, in this paper the pseudo-dynamic approach is utilized for 
determining this force. This optimization is performed by a new meta-heuristic method, so-called Ray 
optimization (RO), Ref. [9].  

In this article after introducing the pseudo-dynamic approach which is offered by Choudhury and 
Nimbalkar [5], the concepts of this new optimization method are presented. The optimization basics of a 
cantilever retaining wall are gathered in section 4. In section 5, the optimal design of a cantilever retaining 
wall under different earthquake loading conditions is performed. The paper is concluded in section 6.   
 

2. PSEUDO-DYNAMIC METHOD OF SEISMIC ACTIVE EARTH  
PRESSURE BEHIND RETAINING WALLS 

 
A common method for determining the distribution of seismic earth pressure is Mononobe-Okabeh 
method [10]. This approximate method offers a linear pressure distribution behind the retaining wall and 
does not consider the time as a natural feature of the earthquake loading. Pseudo-dynamic approach 
provides a condition in which the realistic non-linear distribution of active earth pressure can be presented 
by considering the finite shear wave propagation. Because of the existence of the finite shear wave 
propagation in the problem, time and phase difference, which are two important characteristics of the 
earthquake loading, can have their roles in the calculation of the seismic active earth pressure. Choudhury 
and Nimbalkar [5] performed such analysis in which a wide range of parameters were considered. These 
were wall friction angle (δ), soil friction angle (φ), shear wave velocity (Vs), primary wave velocity (Vp) 
and horizontal and vertical ground accelerations ah and av , respectively. 

The following definitions and concepts are taken mainly from Ref. [5]. 
Consider the fixed base vertical rigid retaining wall AB of height H as shown in Fig. 1. The wall 

supports a cohesionless backfill material with horizontal ground. In the present study, two types of wave 
velocities are considered:  

1. The shear wave velocity /GVs   , with ρ and G being the density and shear modulus of the 

backfill material.  

2. The primary wave velocity 
)(

)(G
Vp 


21

22




 , with   being the Poisson’s ratio of the backfill.  

 

 
Fig. 1. Model of the retaining wall considered for computation of pseudo dynamic active earth pressure [5] 
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The shear waves are assumed to act within the soil media due to earthquake loading. For most 
geological materials 871.V/V sp  , Ref. [11]. The period of lateral shaking is considered in the analysis 

as 
sV

H
T

42





, where ω is the angular frequency [10]. A planer rupture surface inclined at an angle α 

with the horizontal is considered in the analysis. 
If the base of the wall is subjected to harmonic horizontal seismic acceleration of amplitude ahg, 

where g is the acceleration due to gravity and harmonic vertical seismic acceleration of amplitude avg, the 
acceleration at any depth z and time t, below the top of the wall can be expressed as: 
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After some calculations, Choudhury and Nimbalkar define the seismic active earth pressure coefficient Kae 
as: 
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where kh and kv are ah/g and av/g , respectively. Finally the seismic active earth pressure Pae  can be 
calculated by:
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1
HKP aeae   (3)

where γ is the unit weight of the backfill. For obtaining the maximum value of Kae, it is necessary to 
maximize Eq. (2) with respect to t/T and α (see Appendix A).  
By differentiating Eq. (3), the seismic active earth pressure distribution is obtained as: 
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3. RAY OPTIMIZATION 

 
Consider a light ray which is crossing the transparent medium K with the vector Vi

k, Fig. 2. When this ray 
reaches to the point Xi

k, after refracting it enters to the darker medium K+1 and continues its path with the 
vector Vi

k+1. The direction of Vi
k+1 is dependent on the direction of n and the refraction index ratio 

( td n/n ). For determining the direction of this vector, refer to Appendix B. 
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Fig. 2. Incident and refracted rays and their specifications 

 
Ray Optimization method is a multi-agent optimization method which is inspired from the concept of 

light refraction [9]. In this method by moving the agents to new positions, the optimal solution is found. 
Thus, if the movement vector for the ith agent in the kth iteration is Vi

k and the current position of this 
agent is Xi

k, it can be moved to its new position by Vi
k+1. The refraction index ratio for this method is 

selected as 0.45. The direction of n passes through two points. The beginning point is Oi
k and final point is 

Xi
k. Oi

k is defined as:  

 ,
ite.

).kite().kite(K
i 2

iLBGB
O


 (5)

where GB and LBi are the so-far best position and goal function value obtained by all of the agents and ith 
agent, respectively. 

If the number of variables is greater than 3, for using the ray tracing concept the search space can be 
divided to a number of 2D and or 3D spaces. In general, if N is an even number, the search space is 
divided to )/N( 2  2D spaces and if N is an odd number, the search space is divided to 23 /)N(   2D 
space(s) and a one 3D space. Each of these 2D or 3D spaces is named sub-space. With this description, 

k
l,iV
 is the movement vector of the lth sub-space which belongs to the ith agent in the kth iteration and 

k
l,j,iv is the  jth component of the movement vector of the lth sub-space which belongs to ith agent in the 

kth iteration. 
The steps of Ray Optimization algorithm are as follows: 

 
a) Scattering and evaluation step 
 

Based on Eq. (6), scatter the agents in the search space, randomly. 

 ),xx(randxx min,jmax,jmin,j 0
ji, (6)

where, 0
j,ix is the jth component of the ith agent. min,jx  and max,jx  are the allowable minimum and 

maximum values of the jth component. Here, rand is a random number distributed 0 through 1. After 
scattering, evaluate the value of goal function for each agent. Then, save the position and goal function 
value of each agent and the best position and goal function value of the best agent as LBi and GB, 
respectively.  

Make a movement vector for each agent based on Eq. (7). 

 ,randv  210
ji,  (7)

where, 0
j,iv is the jth component of the ith agent. Finally, based on the sub-space grouping, convert 2D and 

3D movement vector to normalized ones. 
 
b) Movement vector and motion refinement step 

Move the agents to their new positions based on their movement vectors. If an agent violates the 
allowable boundaries, modify the length of its movement vector. The new length of movement vector is 
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equal to 0.9 times the distance of current agent position and the intersection with boundary. After 
modifying the movement vector, evaluate the goal function of each agent and update GB and LBi. 
 
c) Cockshy point making and convergent step 
 

Determine Oi
k for each agent. Then, based on Eq. (8), obtain the new movement vector. In this 

equation stoch and d are 0.35 and 7.5, respectively. 
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(8)

d) Finish or redoing step 
 

If the finishing criterion of algorithm is fulfilled the search procedure terminates, otherwise the 
algorithm returns to the second step and continues the search. The finishing criterion can be a specific 
number of iterations for obtaining the optimal solution. 
 

4. THE BASICS OF THE OPTIMIZATION OF CANTILEVER RETAINING WALL. 
 
In the prior sections, pseudo-dynamic analysis of Choudhury and Nimbalkar and Ray Optimization 
method were introduced. In this section, the basics of the optimal design of cantilever retaining wall are 
introduced. 

In this problem, similar to Ref. [8], the cost of consumed concrete and steel is considered as goal 
function. 

 )CC(W)CC(VQ steelconc 4321  (9)

By considering )CC/(QQ 21  , the goal function is converted to: 

 )
CC

CC
(WVQ steelconc

21

43




  (10)

Where Vconc and Wsteel are the volume of concrete and the weight of reinforcement steel in the unit length 

(m3/m and kg/m), C1 and C2 are the cost of the concrete and steel ($/m3 and $/kg), C3 and C4 are the cost 

of concreting and erecting reinforcement ($/m3 and $/kg). Experiences show the value of 
43

21

CC

CC




is in 

the range of 0.035 to 0.045 and in this paper 0.04 is selected. The design variables in this problem are the 
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thickness of top stem (T1), the thickness of the key and bottom stem (T2), the toe width (T3), the heel width 

(T4), the height of top stem (T5), the footing thickness (T6) and the key depth (T7), Fig. 3. 
 

 
Fig. 3. Design variables and the critical sections of the cantilever retaining wall  

 
In this problem, there are two groups of constraints. The first group is about the stability of the 

cantilever retaining wall under exerted forces. This group is gathered from Ref. [12]. The second one is 
about the shear and flexural strength which is gathered from Ref. [13]. For more details of constraints see 
Appendix C. 

For the sake of simplicity, the penalty approach is used for constraint handling. In using the penalty 
function, if the constraints are not violated, the penalty will be zero; otherwise the value of the penalty is 
calculated by dividing the violation of the allowable limit to the limit itself. 

In the process of the optimization, the required rebar based on the ultimate moment, Mu, in each 
critical section is calculated and then the total weight of rebar for the cantilever retaining wall is obtained. 
 

5. A NUMERICAL EXAMPLE 
 

In this section, the optimum design of a cantilever retaining wall under 7 earthquake dynamic loading 

conditions are provided. Kae and the related parameters are taken from Appendix A. Based on the 

suggestion of Ref. [5]; 
sTV

H
 and

pTV

H
 are selected as 0.25 and 0.1337, respectively. The allowable ranges 

of the design variables are given in Table 1.  It should be noticed that for obtaining an optimum design in 

the case of kh=0.2 and kv=0.2, the maximum allowable value of the second variable is increased from 0.6 

to 1.1m. The stem length of the cantilever retaining wall is constant and is equal to 6.1m. The other 

properties of this problem are gathered in Table 2. 
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Table 1. Upper and lower bounds for design variables 

Design variable T1 T2 T3 T4 T5 T6 T7 
Upper bound 0.3m 0.3m 0.45m 1.8m 1.5m 0.3m 0.2m 
Lower bound 0.6m 0.6m 1.2m 3m 6.1m 0.9m 0.9m 

 
Table 2. Properties of the numerical example 

γb: Soil specific weight 20 kN/m3 
φ: Soil friction angle 30 (°) 
qu: Allowable soil pressure 300 kN/m2  
fc

’: Concrete strength 25 MPa  
γc: Concrete specific weight 24 kN/m3  
fy: Yield stress of ribbed bar 420 MPa  
γs: Specific weight of ribbed bar 78 kN/m3 
δ : Wall friction angle 15 (°) 
Number of agents 24 
Number of iterations 400 

 
After optimization process, the results of Table 3 are obtained. kh=0  and kv=0 are related to the 

design of the cantilever retaining wall under the static loading condition. The results of  Table 3 are 
graphically shown in Fig. 4. Based on this figure, by increasing  kh  a more vigorous cantilever retaining 
wall is needed. But by increasing kv, the inverse of this state becomes apparent. This behavior is 
predictable by considering Eq. (4). Thus in the design of the cantilever retaining walls in the prevalent 
conditions, ignoring the kv is acceptable. 

 
Table 3. The results obtained for optimum design of the cantilever retaining wall 

  Optimal dimensions for best result based on RO (m) 
Variable  kh=0.0   kh=0.1   kh=0.2  
  kv=0.0  kv=0.0 kv=0.05 kv=0.1 kv=0.0 kv=0.1 kv=0.2 
T1  0.413  0.515 0.523 0.498 0.600 0.575 0.412 
T2  0.600  0.600 0.600 0.600 0.600 0.600 0.879 
T3  0.663  0.686 0.707 0.687 0.755 0.733 0.946 
T4  2.053  2.415 2.301 2.284 2.707 2.644 2.182 
T5  3.674  4.170 4.255 4.132 4.443 4.350 3.367 
T6  0.300  0.300 0.300 0.300 0.305 0.300 0.518 
T7  0.201  0.200 0.200 0.200 0.200 0.201 0.719 
Best result  27.621  31.404 30.908 30.050 36.123 34.958 32.216 

 

 
Fig. 4. Effect of kh and kv on the goal function 

Figure 5 shows the convergence curve for obtaining the optimum solution. The utilized meta-
heuristic methods are RO, CSS [14] and PSO. 
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Fig. 5. Comparison of the convergence curves for the three algorithms used  
for the cantilever retaining wall, kh=0.2 and kv=0.1 

 
Now consider the following two definitions: 

 
rafty factoExisting s
rafty factollowable sA

atiocapacity rStability  (11)

 
orce fshearllowable A

hear forceExisting s
city ratioShear capa  (12)

By these definitions, the optimum design of the cantilever retaining wall can be investigated in more 
detail. Table 4 provides these details and Fig. 6 is a graphical example of this point of view. 
 

Table 4. Capacity assessment with CR meaning the capacity ratio 

Case kh=0.0,kv=0.0 kh=0.1,kv=0.0 kh=0.1,kv=0.05 kh=0.1,kv=0.1 kh=0.2,kv=0.0 kh=0.2,kv=1.0 kh=0.2,kv=0.2 
Shear CR 1 23.47% 26.59% 26.49% 25.80% 29.41% 26.28% 25.40% 
Shear CR 2 41.37% 49.86% 48.13% 46.15% 60.39% 57.27% 31.51% 
Shear CR 3 86.04% 90.54% 94.22% 90.51% 100.13% 99.38% 48.66% 
Shear CR 4 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 40.19% 
Bearing CR 99.97% 99.98% 99.94% 99.86% 100.01% 100.00% 100.02% 
Sliding CR 80.42% 86.65% 90.74% 92.49% 95.68% 99.06% 100.01% 
Overturning CR 56.30% 54.03% 55.58% 55.00% 54.08% 53.80% 54.58% 

 
Fig. 6. Capacity assessment, kh=0.2 and kv=0.1 
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In a few cells of this table, the written capacity ratio is greater than 100%. As an example, the greatest 
numeral is 100.13%. However, this error is negligible, because the corresponding error of this numeral is 
0.0013. 

The most important controlling factor in the optimum design of cantilever retaining wall is the 
bearing capacity of the soil which is at the toe region. In all the cases, with a good approximation, the 
bearing capacity ratio is 100%. The shear capacity ratio at the toe region is the second controlling factor 
with average of 93% in all the cases except kh=0.2 and kv=0.1. Finally, the sliding capacity ratio is the last 
controlling factor which is increased from 80.42% to 100.01%.  An important point in Table 4 is that, the 
shear capacity ratio at the heel region in all the cases except 7th case is 0.00%. This means the stress 
triangle has not entered into the heel region.  
 

6. CONCLUDING REMARKS 
 
The aim of the cantilever retaining wall optimization is to provide a design which not only satisfies the 
strength and stability constraints, but is also economical. In this paper, design of the cantilever retaining 
walls under various earthquake loading conditions is provided. These designs are performed by a new 
meta-heuristic optimization method called Ray Optimization. These designs reveal the following two 
results: Firstly, the bearing capacity of soil under toe region, sliding stability of cantilever retaining wall 
and the shear strength of the critical section in the toe region are the most important parameters in 
choosing the optimum design. Secondly unlike the expectation, the increase of the vertical component of 
the earthquake has a reverse effect on the design of the retaining walls. 
 
Acknowledgement: The first author is grateful to the Iran National Science Foundation for the support.  
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APPENDIX A 

 
Ray optimization method is used for maximization of Kae with respect to α and t/T or tc. 

A.1. Magnitudes of Kae, tc and α for kv=0 

 kh=0.0 kh=0.1 kh=0.2 
Φ (°) δ (°) tc (t) α (°) Kae tc (t) α (°) Kae tc (t) α (°) Kae

20 

−10 0.8366 61.5561 0.5779 0.4158 57.9211 0.6619 0.4158 52.9751 0.7531 
0 0.3847 55.0000 0.4903 0.4158 50.1609 0.5747 0.4158 43.4909 0.6722 

10 0.0471 51.0568 0.4467 0.4158 45.5149 0.5340 0.4158 37.9912 0.6401 
20 0.4168 48.1495 0.4269 0.4158 42.1082 0.5198 0.4158 34.0785 0.6383 

30 

−15 0.3692 65.1039 0.4161 0.4201 62.3252 0.4855 0.4201 59.1001 0.5600 
0 0.1204 60.0000 0.3333 0.4201 56.3105 0.3987 0.4201 51.9607 0.4721 

15 0.0726 56.8598 0.3014 0.4201 52.5497 0.3680 0.4201 47.4551 0.4461 
30 0.9456 54.3429 0.2972 0.4201 49.4919 0.3706 0.4201 43.7647 0.4606 

40 

−20 0.2085 68.7680 0.2837 0.4246 66.4034 0.3386 0.4246 63.8424 0.3975 
0 0.7630 65.0000 0.2174 0.4246 61.9018 0.2663 0.4246 58.4855 0.3211 

20 0.5737 62.6013 0.1994 0.4246 58.9527 0.2496 0.4246 54.8821 0.3081 
40 0.7351 60.4258 0.2102 0.4246 56.1987 0.2698 0.4246 51.4217 0.3430 

 
A.2. Magnitudes of Kae, tc and α for kv=0.5 kh 

 kh=0.0 kh=0.1 kh=0.2 
Φ (°) δ (°) tc (t) α (°) Kae tc (t) α (°) Kae tc (t) α (°) Kae

20 

−10 0.8366 61.5561 0.5779 0.4058 58.0414 0.6594 0.4058 53.3249 0.7475 
0 0.3847 55.0000 0.4903 0.4058 50.3220 0.5721 0.4058 43.9653 0.6660 

10 0.0471 51.0568 0.4467 0.4058 45.6987 0.5312 0.4058 38.5188 0.6331 
20 0.4168 48.1495 0.4269 0.4058 42.3072 0.5168 0.4058 34.6329 0.6303 

30 

−15 0.3692 65.1039 0.4161 0.4043 62.1685 0.4893 0.4043 58.7234 0.5682 
0 0.1204 60.0000 0.3333 0.4043 56.1008 0.4023 0.4043 51.4480 0.4804 

15 0.0726 56.8598 0.3014 0.4043 52.3043 0.3718 0.4043 46.8548 0.4551 

30 0.9456 54.3429 0.2972 0.4043 49.2155 0.3748 0.4043 43.0926 0.4714 

40 

−20 0.2085 68.7680 0.2837 0.4029 66.0664 0.3464 0.4029 63.0939 0.4144 
0 0.7630 65.0000 0.2174 0.4029 61.4559 0.2734 0.4029 57.4747 0.3372 

20 0.5737 62.6013 0.1994 0.4029 58.4240 0.2571 0.4029 53.6694 0.3259 
40 0.7351 60.4258 0.2102 0.4029 55.5817 0.2789 0.4029 49.9888 0.3660 
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A. 3. Magnitudes of Kae, tc and α for kv=kh 

 kh=0.0 kh=0.1 kh=0.2 
Φ 
(°) 

δ (°) 
tc (t) α (°) Kae tc (t) α (°) Kae tc (t) α (°) Kae 

20 

−10 0.8366 61.5561 0.5779 0.3937 58.1426 0.6572 0.3937 53.6135 0.7427 
0 0.3847 55.0000 0.4903 0.3937 50.4574 0.5698 0.3937 44.3565 0.6608 

10 0.0471 51.0568 0.4467 0.3937 45.8531 0.5289 0.3937 38.9558 0.6273 
20 0.4168 48.1495 0.4269 0.3937 42.4746 0.5142 0.3937 35.0924 0.6236 

30 

−15 0.3692 65.1039 0.4161 0.3884 61.9800 0.4939 0.3884 58.2625 0.5781 
0 0.1204 60.0000 0.3333 0.3884 55.8484 0.4067 0.3884 50.8191 0.4905 

15 0.0726 56.8598 0.3014 0.3884 52.0088 0.3764 0.3884 46.1192 0.4662 
30 0.9456 54.3429 0.2972 0.3884 48.8827 0.3800 0.3884 42.2699 0.4846 

40 

−20 0.2085 68.7680 0.2837 0.3845 65.6817 0.3553 0.3845 62.2188 0.4339 
0 0.7630 65.0000 0.2174 0.3845 60.9455 0.2816 0.3845 56.2860 0.3561 

20 0.5737 62.6013 0.1994 0.3845 57.8179 0.2657 0.3845 52.2392 0.3470 
40 0.7351 60.4258 0.2102 0.3845 54.8729 0.2895 0.3845 48.2945 0.3940 

 
Further information on retaining walls can be found in [15, 16, 17]. 
 

APPENDIX B 
 
B. 1. Two dimensional ray tracing. 
 
Consider Fig. App. B.1.  
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Notice that n and d must be normalized vectors. 
 

 
App. B.1. Ray tracing in 2D space 

B. 2. Three dimensional ray tracing. 

Define  i* and j* as follows: 
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Now define n* and d*as: 
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Calculate t*: 
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Notice that n* and d* must be normalized vectors. 

t* is a two dimensional vector like t*=(t1
*,t2

*). 

Finally calculate t: 

                  ** jit .t.t **
21   

(B-5) 

 

APPENDIX C 
 
C. 1. Stability control 

All the loads acting on the cantilever retaining wall are shown in Fig. App. C.1. 

 

 
App. C.1. Loads on the cantilever retaining wall 

 
Check for overturning: 

                  51.
M

M
FS

o

r
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
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 (C-1) 

 rM :  Sum of the moments of forces that tends to resist the overturning of the wall about C. 

 oM : Sum of the moments of forces that tends to overturn the wall about point C. 
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Check for sliding along the base: 

                51.
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aeP : Total seismic active thrust. 

)tan(   

Check for bearing capacity failure: 
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uq : Ultimate bearing capacity.  It should be noticed that because of the existence of earthquake loading, the ultimate 

bearing capacity is increased by 33%. 

maxq : Maximum bearing pressure. 
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where L is the footing length, B is the footing width which is equal to 1m , x is the length of the lever of the force 

about point C, and Mae is the total moment of the seismic active thrust about point C.  

C. 2. Strength control 

The load combination is defined as the following, Ref. [13]: 
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Mu and Vu are the ultimate moment and shear at the critical sections. The critical sections of the moment are shown in 

Fig. (3). The critical sections of the shear are at a distance d (effective depth) from the face of moment critical 

sections. 

Check the shear capacity: 

        

1
V.

V

nv

u 
  

(C-6) 

             d.B.
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B is the length of shear critical section based on (mm), which is equal to 1000mm, v is equals 0.75, d is the 

effective depth, (mm) and fc is the concrete strength (MPa).  

Determining the required rebar: 

Based on Mu (N.mm) in each critical cross section, the required area cross section of rebar, As based on (mm), is 

calculated. The minimum steel ratio is 0.0018.  
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b  
is equal to 0.9 and  fy is the rebar yield stress in MPa.  

 

  


