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Abstract— For a symmetric structure the degrees of freedom (DOFS) in two sides of the axis of
symmetry can be either symmetric or anti-symmetric. If there is no active DOF on the axis of
symmetry, then we will have the Form 1l symmetry for the structural matrices, and alternatively if
we have some active DOFs on the axis, we will have Form 111 symmetry. These forms are already
developed and employed in structural dynamics and stability analysis of frame structures.
However, for the structures having both symmetric DOFs and anti-symmetric DOFs,
simultaneously, we will have different canonical forms, defined in this paper as the Form A and
Form B symmetry. Thus the main objective is to develop these forms and explore the governing
relationships. The presented method is then applied to the analysis of symmetric structures.
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1. INTRODUCTION

Symmetry has been widely used in science and engineering [1-5]. A thorough review can be found in the
work of Kangwai et al. [6]. Methods are developed for decomposing and healing the graph models of
structures, in order to calculate the eigenvalues of matrices and graph matrices with special patterns [7].
These structures correspond to various matrices such as adjacency, Laplacian, stiffness and mass matrices
of special forms, known as canonical form. A canonical form, in general, can be defined as a block
partitioned matrix which can be transformed into an upper block triangular matrix, thus producing block
diagonal entries. The applications of canonical forms to vibrating mass-spring systems and frame
structures are developed in [8], (Kaveh and Rahami, 2007). These forms are also applied to the calculation
of the buckling load of symmetric frames [9]. These applications are extended to the static analysis of
symmetric frames [10].

In classical approaches a symmetric structure is decomposed into substructures and appropriate
boundary conditions are then imposed. Naturally for different configuration, loading and boundary
conditions, different boundary conditions will be needed.

In general, for a structural system if all the DOFs in the two sides of the axis of symmetry are
symmetric or anti-symmetric, depending whether we have some active DOFs on the axis of symmetry or
no active DOFs, we will have Form Il and Form Il symmetry for the structural matrices, respectively.
Fig. 1la and Fig. 1b show examples of structures for which the corresponding matrices have these forms.
These forms are well documented in the previous papers [7, 8] and briefly discussed in the Appendix A.
However, when both symmetric DOFs (vertical components) and anti-symmetric DOFs (horizontal
components) are present simultaneously, then we will have different forms called Form A and Form B
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canonical forms, as discussed in this paper. Examples of such structures having these properties are
illustrated in Fig. 1c and Fig. 1d, respectively. The method presented in this paper can be considered as the
generalization of the approach developed in [10].
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(c) A structure with Form A symmetry  (d) A structure with Form B symmetry
Fig. 1. Structures with matrices corresponding to different canonical forms

In this paper, a general method is presented for the analysis of symmetric structures with their stiffness
matrices having Form A and Form B symmetry. For this purpose two submatrices S and T are employed.
It is proved that on performing row and column operations on matrices with Form A and Form B, a block
diagonal matrix will be obtained which has a similarity property (identical eigenvalues) as that of the
original matrices. Having the matrices T and S, all the information about the main matrix can be obtained,
and it is only sufficient to find the non-singular permutation matrix P, i.e. once we know the type of the
symmetry we can perform the desired operation on the main matrix, having the two submatrices S and T.
Here, the displacements of a symmetric structure with Form A and Form B are obtained using S and T. For
this purpose, first the reverse relationship between the inverse of the main matrix and inverse of Sand T is
established. Then comparing the displacements of the main system under different types of loading with
the product of the inverse of S and T by the load vector, the displacements of the main structure are
calculated. Finally, a general loading is expressed in terms of two different symmetry forms and the
displacements of the main structure are obtained.

2. PRELIMINARY DEFINITIONS AND RESULTS
1. Two matrices A and B are called similar if there exists a non-singular permutation matrix P such that

B=P'AP 1)
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2. The eigenvalues of two similar matrices are identical.

3. Row operator matrix: Consider an arbitrary nxn matrix. A matrix which adds the kth row to the Ith row
is a nxn unit matrix, where the entry in the Ith row and the kth column is “1” in place of “0”. For reducing
the kth row from the Ith row, one should use -1 in place of 1. This matrix is multiplied to the considered
matrix from the left-hand side. The inverse of this matrix is itself, with this difference being that the sign
of the non-diagonal entry should be changed, i.e. -1 to +1 and +1 to -1.

4. Column operator matrix: This is similar to the previous case with the only difference being that the
multiplication should be performed from the right-hand side.

5. The inverse of an upper block triangular matrix R, in the form of Schur, can be obtained as follows:
S X St —siXT?
R= = R'= 2
0T 0 T

3. ROW AND COLUMN OPERATORS FOR THE
FORMS A AND FORM B SYMMETRY

a) Form A symmetry

In this case we have no active DOFs on the axis of symmetry and therefore any matrix R associated with
this case can be expressed in the Form A symmetry as

AC‘DF

c" B |-F" E

R= 3
D -F| A -C
FT" E |-C"T B

The first and second rows and columns correspond to the left-hand side DOFs and the third and fourth
rows and columns belong to the right-hand side of the axis of symmetry. In order to obtain R’, the

necessary permutation matrices P and P~ are as follows:

(4)
R' Leads to
A+D C-F D F
R/ p-lRp CT-F' B—E‘ ~-FT E -
0 0 A-D -C-F
0 0 ‘—CT—FT B+E
Resulting in
SR:{ A+D C—F} and TR:{ A-D —C—F} ©)
C'-F'" B-E -C"-F" B+E
and
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A! C! D! F!
., CrT B! _ FrT E/
R™ = )
D! _ F! AI _C!
F/T Er _CrT Br
leading to
A+D" C'-F' 1 A -D' -C'-F' 1
4= =[S T.,= =T 8
R |:CIT_F/T Br_Er:| [ R] R |:_C/T_F1T B,+E, :| [ R] ( )
Addition and subtraction of the Egs. (8) result in
A' - F’ 1 1 —1 1
[_FIT B’ :|_E(SR—1 +TR—1)_E([SR] +[Te] ) )
and
D' C’ 1 1 1 )
|:CrT _Erj|=E(SR1 _TR’l):E([SR] _[TR] ) (10)

Hence, instead of finding the inverse of a matrix like R, one can find the inverse of smaller matrices S and
T, and using Egs. (9) and (10), the submatrices A’, B’,C',D’and E’ can be constructed. Then the
inverse of the matrix R can be formed by assembling these submatrices.

b) Form B symmetry

In this case we have active DOFs on the axis of symmetry and therefore any matrix R associated with
this case can be expressed in Form B symmetry as

A C D F G N
c" B -FT E J H
. DT -F AT -C G -N )
FT' E -cC B -J H
gt JT 6" 37 Kk o0
NT HT -NT HT 0 L

The first and second rows and columns correspond to the left-hand side DOFs and the third and fourth
rows and columns belong to the DOFs on the axis of symmetry and the fifth and sixth rows and columns
correspond to the right-hand side of the axis of symmetry. In order to obtain R’ , the necessary permutation
matrices P and P for obtaining R' are as follows:

0
|

o oo — o —

o O

o
o — O O O o

- O O O O O

o O o — O o

o o — O O o

and P7l=
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[ A+D C-F G N D F
C'-F'" B-E 1J H —F' E
. 2GT 2J7 K 0 G’ -J7
R'= T T
0 0 0 L -N H
0 0 0 |-2N A-D -C-F
| 0 0 0| 2H -C'-F" B+E |
Corresponding to
A+D C-F G A-D -C-F -2N
S.=|C"-F'" B-E and T,=(-C"-F" B+E 2H
2GT 2J7 K ~NT HT L
and
C A C’ D’ F' G N |
CIT BV _FIT EV JV H!
_1 D! _F! A! _C! G! _Nl
R =
FIT E! _CIT Bf _J! H!
GrT JIT GT _J!T K’ 0
_NIT HVT NIT HIT O L( |
Therefore
A+D' C'-F G A-D' -C'—-F' -2N'
S..=|CT-FT B-E J|=[s;]" T.=|-CT-FT B+E 2H' |=[T]"
ZGIT 2J/T Kr _NuT HrT Lr
Adding and subtracting the Egs. (16) leads to
A ~F i(G'—zN')
2
—FT B’ %(J’+2H’) =%([SR]_1+[TR]_1)
| 2 2 2
and
D’ o ~(G'+23)
T ' 1 f ' 1 -1 —1
C -E EU ~2H’) =3 SrI™-[Tr]
l(2(3'T + N'T) 1(23'T —H'T) 1(K'— L')
| 2 2 2 |
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(13)

(14)

(15)

(16)

17

(18)
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Therefore, instead of calculating the inverse of R one can use the inverse of smaller matrices S and T.
Here, the submatricesG',H", N', J’,K"and L’ can be calculated directly from the inverse of the S and
T matrices, and the submatrices A’, B’, C', D', and E’ can be extracted from Eq. (17) and Eq. (18).
The inverse of the matrix R can then be obtained by assembling of these submatrices.

4. CALCULATION OF DISPLACEMENTS FOR FORMS
A AND FORM B SYMMETRY

The displacements A of structure under the external loading P can be obtained from the force-
displacement relationship given by

A=K7p (19)
a) Calculation of the displacements for the form A symmetry

Case 1 of Form A: For the load vector P=[P Q | P Q[ we have

sl tomte) Glerllrtd @

Case 2 of Form A: For the load vector P = [P Q|-P QP we have
-0, o, P -P
[ Ha ()
% ) \9 -Q Q
Case 3 of Form A: For the load vector P = [P Q|P - QP we have

(2) ) (—2) i 5_1@ (22)

Case 4 of Form A: For the load vector P = [P Q|-P —QP we have

e T e T S

General loading case of Form A: We obtain the general loading by combining the above four cases using
two methods: P=[Ww X |Y ZT
This is the combination of Case 1 and Case 4.

(51J:18{ww}l(ﬂ,)l[w_v } (53J:1(SI,)1{W+Y}F1T{—W +q -
05, 2 X-Z| 2 -X-Z 0, 2 X-Z| 2 X+Z

b) Calculation of displacements for the Form B symmetry

Case 1 of Form B: For the load case P = [P Q PQ P Q ]T form Eg. (66) we have

5, P 0 5, P 0
5,+=S10t-1'THQ S, p=1'S™0+1"T™Q (25)
5, P! QL 5, P Q

2 2
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Case 2 of Form B: For the load case P = [P Q P -Q P Q ]T from Eq. (26) we have

o, P 0 0, P 0
S, r=8S1Q-1'T™0 S, p=1'S1Q +I1"T™0 (27)
S P’ g Og P' g

2 2

In the special case with Q'=0 (anti-symmetric loading), the relationship holds between the above
vectors.

5, 0 5,
S,t=0 -1 0[5t 8,=6,5,=-5, and 5, =0 (28)
5] [0 0o ofs,

Case 3 of Form B: For the load case P =[P Q| -P Q| P Q'P from Eq. (29) we have

5, P 0 53 -P 0
S,t=1TH -Q l+s™o Set=1TH Q t+1sHo (30)
5, ~Q'/2 P’ Se Q/2 P’

In the special case with P'=0 (symmetric loading), the relationship holds between the above vectors.

51 53
0, =—1%0
2 4 (31)
s 8
§,=-5, 8,=5, and &, =0
Case 4 of Form B: For the load case 5=[P Q|-P -Q|F Q']T we have
5, P 0 5, —Pp 0
S,p=I1T™ 0 t+S™Q S,p=1"T" 0 ++15Q (32)
5, ~Q'/2 P’ 5, Q/2 P’

General loading case of Form B: This case is obtained by different combinations of the four cases
discussed previously.

This is a combination of Case 1and Case 4. P =[U V |W X |Y Z[

o, L U+W L Uu-w
0, :ES’l V-X +§I”I"l -V -X
05 2Y -Z
(33)
0, 1 U+W . -U +W
0, =EI'S’l V-X +EI”I"l V+X
Og 2Y YA

August 2014 IJST, Transactions of Civil Engineering, Volume 38, Number C2



502 L. Shahryari
5. NUMERICAL EXAMPLES

Example with three cases: Consider the planar truss as shown in Fig. 2. Under the applied load, the
displacements of the nodes 2, 3, 5 and 6 are required. For this truss we have E = 2.07x10° KN /m? ,
| =100cm*, A=10cm? and L=100cm.

500kN 500kN

6 400kN

W

2 2 5 2
LL—PL—FL%
Fig. 2. A planar truss with symmetric loading

(a) For this symmetric structure if the load vector is

PZ[PZX I:)3>< I:)2y I:>3y I:)5>< P6>< I:)5y I:)Gy]T

P=[0 -400 0 -500 0 400 0 -500]"

Then we have the Case 2 loading with Form A symmetry. Thus using Eg. (21) we obtain the
displacements as

é_‘2[52x é‘3>< 52y é‘3y 55>< 56>< 55y 56y]T

5=[0 2 -70 -70 0 -2 -70 —70[ x10™*cm
(b) When the same structure is loaded by

P=[400 0 0 -500 400 0 0 500]

then we will have the Case 3 loading with Form A symmetry. Thus using Eq. (22) we obtain the
displacements as

5=[27 4 -19 -27 27 4 19 27] x10™cm
(c) Now consider the same structure under the following general loading:
P=[0 0 0 0 00 -90 0

This example is an instance for general loading case of symmetry form A. Hence using Eq. (24) we obtain
the displacements as

5=[-6 21 -67 -62 -8 -3 -118 -84] x10™*cm

7. CONCLUSION

In this article the governing relationships for planar trusses are established for the Form A and Form B
canonical forms. Using a similar approach, canonical forms can easily be derived for other types of
structures. Here, formulation obtained for calculating the deformation of the structures containing these
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types of symmetry is established. The displacements of a structure are obtained in terms of two
submatrices T and S with dimensions much smaller than that of the stiffness matrix of the entire structure.
Since in static analysis, the main computational time belongs to the solution of the equations
corresponding to the stiffness matrix, the present method is more economical, because of using smaller
number of simultaneous equations. Finally, it should be mentioned that the present method can be
employed for the analysis of symmetric trusses with any general loading.

10.
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