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Abstract– This paper presents a social harmony search algorithm to solve optimization problems 
with continuous design variables. Although the Harmony Search (HS) algorithm (HSA) has 
proven its ability in finding near global regions within a reasonable time, it is rather inefficient in 
performing local search. The proposed method applies the harmony search optimizer for global 
optimization and normal distribution is employed to update the position of each design variable of 
a new harmony found by the first rule of the HS (memory consideration) in every stage to rapidly 
attain the feasible solution space. Normal distribution works as a global search in early iterations 
and as a local search in final iterations to improve HS in order to quickly converge and find better 
solutions. Various benchmark optimization problems are used to illustrate the effectiveness and 
robustness of the proposed method. Finally, the experimental results reveal the superiority of the 
proposed method in quick convergence and finding better solutions compared to the classic HS, its 
recently developed variants, and some other optimization algorithms.           
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1. INTRODUCTION 
 

In recent years, researchers have shown an increasing interest in the study of meta-heuristic algorithms, 
including evolutionary algorithms. Meta-heuristic literally means to find the solution using higher-level 
techniques [1]. There are two important components in meta-heuristic algorithms, named intensification 
and diversification. This is very important to make an efficient balance between these two seemingly 
opposing components [2]. In the diversification section one tries to search all solution space, and in the 
intensification section search is performed only in a fraction of solution space. Therefore, if the 
diversification is too intense, the algorithm converges very slowly and a desirable solution cannot be 
obtained with small number of iterations. Conversely, if the intensification is too intense, the algorithm 
may be trapped in a local optimum causing a premature convergence. In the early iterations one should 
have high diversification with low intensification, and in subsequent iterations diversification should be 
reduced gradually while increasing the intensification. 

Recently Geem et al. [3] proposed a new evolutionary algorithm called Harmony Search (HS) 
algorithm that is used in many optimization problems, including function optimization, engineering 
optimization, NP-complete problems, vehicle routing, design of water distribution networks, groundwater 
modeling, and structural design [4-8]. 

This study presents a new version of HS, where concepts of normal distribution are used to improve 
the performance of the HS and its variants, and thus to achieve a better balance between diversification 
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and intensification. The new version of HS is named social harmony search (SHS). Additionally, with this 
method, we have simplified the second rule of the HS (pitch adjustment). We replace the bandwidth 
parameter with a new parameter that is adjusted automatically according to the previous experiments of all 
harmonies.  

In order to show the effectiveness and robustness of this method, the algorithm is applied to various 
optimization problems. Numerical results demonstrate the capabilities of the proposed method, its quick 
convergence and ability to find a better solution compared to the classic HS. 

The rest of this paper is organized as follows: section 2 provides a summarized overview of the 
classic HS algorithm and its recently developed variants. In section 3, we introduce the proposed method. 
In section 4, results of the experiments are presented and discussed. Finally, in section 5 some conclusions 
are presented. 
 

2. OVERVIEW OF THE CLASSIC HARMONY SEARCH 
 
In this section, a brief review of the harmony search algorithm and its recently developed variants are 
presented. 
 
a) Classic harmony search algorithm 
 

Recently, a new meta-heuristic optimization algorithm–harmony search (HS) with continuous design 
variables was developed by Geem et al. [3]. This meta-heuristic algorithm is conceptualized using the 
musical improvisation process of searching for a perfect state of harmony [3]. A musician normally seeks 
to find pleasing harmony as determined by an aesthetic standard, just as the optimization process seeks to 
find a global optimum as determined by an objective function. The pitch of each musical instrument 
determines the aesthetic quality, just as the set of values assigned to each decision variable determines the 
objective function value. The HS works as follows: 
 
Step 1: Initialize the optimization problem and HS parameters. 
Step 2: Initialize the harmony memory (HM). 
Step 3: Improvise a new harmony. 
Step 4: Update the HM. 
Step 5: Repeat steps 3 and 4 until the termination criterion is satisfied. 
 
(1) Step 1. Initialize the optimization problem and HS parameters. In step 1, the optimization problem 
and its decision variables bounds are defined. In addition, the parameters of HS are specified in this step. 
These parameters consist of the harmony memory size (HMS), harmony memory considering rate 
(HMCR), pitch adjusting rate (PAR) and the number of improvisation (NI). A large value for the HMS 
increases the search strength of the algorithm, and conversely a small value causes a quick convergence 
without performing a complete search. However, the running time increases when the number of HMS 
increases, and we cannot choose a high number for the HMS. Here, HMCR and PAR are parameters that 
are used to improve the solution vector. Both are defined in step 3.  
 
(2) Step 2: Initialize the harmony memory (HM). In step 2, the harmony memory (HM) is filled as 
follows: )( iii

j
i LBUBrLBx  , Ni 1 , HMSj ,...,2,1 , where r ~ U (0,1). iLB  and iUB  are 

the lower and upper bounds of each decision variable, respectively, and N is the number of decision 
variables. 
 
(3) Step 3: Improvise a new harmony. Improvise a new harmony using tree rules: memory consideration, 
pitch adjustment and random selection. The three rules of HS can be summarized as follows: 
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      while (i   number of variables decision (N)) 
     if (r1   HMCR) then, memory consideration 
          j

ii xx  , where j ~ int(U(0,HMS))+1 
          if (r2   PAR) then, pitch adjustment 
               bwrxx ii  3 , where r3 ~ U (−1, 1) and bw is an arbitrary distance bandwidth 
          end if    
     else random selection 
          )( iiii LBUBrLBx   
     end if 
end while 

 
Memory consideration is the first rule of HS. Its importance is because it ensures that good harmonies 

are considered as elements of the new solution vectors. The effectiveness of this rule is shown by the 
value of HMCR. The parameter HMCR, which varies between 0 and 1, controls the balance between 
diversification and intensification [1]. If this rate is too low, it causes the algorithm to have a high 
diversification and low intensification, and only a few elite harmonies are selected, so it may converge too 
slowly. If this rate is extremely high, it leads the algorithm to a low diversification and high 
intensification, and the pitches in the harmony memory will be mostly used, while other ones will not be 
explored well, leading to a premature convergence. 

The pitch adjustment is the second rule of HS which has parameters such as pitch bandwidth (bw) and 
PAR. As the pitch adjustment in music means changing the frequency, it means generating a slightly 
different value in the HS [1]. The pitch adjustment step is similar to the local search mechanism. 
Consequently, it clearly shows that PAR and bw have a great influence on the quality of the final solutions. 
A low PAR with a narrow bandwidth can slow down the convergence of HS because of the limitation in 
the diversification. Conversely, a very high PAR for a wide bandwidth causes the algorithm to not be able 
to achieve all potential optimums because it works like a random search algorithm.  

The third rule is the random selection. In this section there is no balance between diversification and 
intensification. HS algorithm uses this rule to increase the diversity of the solution. The use of 
randomization can drive the system further to explore various diverse solutions so as to attain the global 
optimality [1]. 
 
(4) Step 4: Update the HM. If the new harmony has a better objective function value than the worst 
harmony in the HM, the new harmony ),...,,( 21 Nxxxx   replaces the worst harmony. 
 
(5) Step 5: Repeat Steps 3 and 4 until the termination criterion is satisfied. The computation is 
terminated when the maximum number of improvisations is met. Otherwise, steps 3 and 4 are repeated. 
 
b) Improved harmony search algorithm 
 

The original HS algorithm uses fixed values for both PAR and bw and these parameters cannot be 
changed during the new improvisation. This drawback prevents the algorithm from finding an optimal 
solution in a reasonable number of iterations. 

A low PAR with a wide bandwidth in early iterations can enforce the algorithm to have a good 
diversification, and a very high PAR with a narrow bandwidth in the final iterations can cause the 
algorithm to have a good intensification. Mahdavi et al. [9] proposed a variant of HS, called the improved 
harmony search (IHS), to dynamically increase PAR and decrease bw, respectively. The key difference 
between IHS and the traditional HS method is in the way of adjusting PAR and bw. The IHS dynamically 
updates PAR and bw according to the following equations: 
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where 
PAR(t)  pitch adjusting rate for each generation 
PARmin  minimum pitch adjusting rate 
PARmax   maximum pitch adjusting rate 
NI  number of solution vector generations 
t  generation number 
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where 
bw(t)   bandwidth for each generation 
bwmin   minimum bandwidth 
bwmax   maximum bandwidth 

 
c) Global-best harmony search algorithm 
 

Another developed variant of HS, called the global-best harmony search (GHS), is developed by 
Omran & Mahdavi [10] and is inspired by the concept of swarm intelligence as proposed in Particle 
Swarm Optimization (PSO) [11,12]. This variation of HS simplifies the pitch adjustment step by 
eliminating the difficulties in selecting bw; however, it cannot make a good balance between 
diversification and intensification in pitch adjustment section. 

The GHS has exactly the same steps as that of the IHS with the exception that step 3 is modified as 
follows: 
 
      while (his   number of variables decision (N)) 

   if (r1   HMCR) then (memory consideration) 
       j

ii xx  , where j ~ int(U(0,HMS))+1 
       if (r2   PAR(t)) then (pitch adjustment) 

                    best
ki xx  , where best is the index of the best harmony in the HM and k~ int(U(0,N))+1 

       end if    
   else (random selection) 
       )( iiii LBUBrLBx   
   end if 
end while 

 
Selecting a new value for the corresponding decision variable from the current best harmony from the 
harmony memory causes a premature convergence and makes the algorithm unable to find the global 
optimum [6]. 
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3. PROPOSED METHOD 
 
As mentioned earlier, diversification and intensification are two important parameters in meta-heuristic 
algorithms. It is very important to make a good balance between these two important parameters. This 
insures that the final solutions are good results for corresponding optimization problems. One should 
gradually decrease diversification while at the same time, increasing intensification. In the HS algorithm 
two intelligent sections (memory consideration and pitch adjustment) were used to select a new value for 
decision variables. In the memory consideration section, HS makes a good balance between diversification 
and intensification. Since solutions often start with some randomly generated ones being inserted in 
harmony memory and gradually reducing their diversification while simultaneously increasing their 
intensification selecting a value from harmony memory in early iteration makes a good global search 
(diversification) and in the final iterations makes a good local search (intensification). The one serious 
drawback of the HS algorithm arising from the pitch adjustment section, is that it makes the algorithm 
incapable of making a good balance between these two important parameters. As mentioned before, some 
researchers have recently tried to eliminate this drawback, and some new derivations of the HS have been 
developed.  

The key difference between social HS and earlier methods of the HS is in the way of adjusting a new 
harmony found by the first rule of harmony search (memory consideration). To improve the performance 
of the HS algorithm and its derivations, social HS algorithm uses the normal distribution for adjusting the 
new harmony found by the memory consideration rule, then one should check whether the current 
decision variable value violates the variable bounds or not. If it does, it should be reset to the previous 
position. When the harmonies search in the feasible space to find the solution, if any one of them searches 
into the infeasible region, it will be forced to come back to the previous position to guarantee a feasible 
solution. The harmony which comes back to the previous position may be closer to the boundary at the 
next iteration. This allows the harmonies to search to the global minimum with a higher probability. This 
method is called the fly-back mechanism [13]. Some experimental results have shown that it can find a 
better solution with fewer iterations than other techniques [13]. Additionally, the social HS uses all values 
of the ith decision variables in harmony memory to adjust the new harmony. This advantage enables the 
algorithm to find the new harmony with more social influence and uses experiments of all harmonies. The 
social HS algorithm adjusts the new harmony according to the following equations:  
 

),( iixN                                                                             (3) 
 
Where 
 

ix                    the selected value of the ith variable in the HM 

i                    the variance value of the ith variable in the HM 
),( iixN        denotes a random number normally distributed with mean value ix  and variance i  . 
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Where 
HMS    harmony memory size 

j
ix     all values of the ith decision variable in the HM. HMSj 1  and Ni 1  

     fixed value to adjusting the i  . (This parameter is described in section 4) 
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In the proposed method, the pitch adjustment step was simplified and the mentioned drawback of HS 
and its derivations were eliminated. In this method i   is similar to bw. As mentioned before, we need to 
have a wide and low bandwidth, respectively in the early and final iterations in order to attain 
diversification and intensification. Thus, because of the high variance between the selected ith decision 
variable and other ith decision variables ( i  ), in the harmony memory in early iterations, normal 
distribution makes global search (exploration). Conversely, because of the low variance between the 
selected ith decision variable and other ith decision variables ( i  ), in the harmony memory in the final 
iterations, normal distribution makes local search (exploitation). Therefore, ( i  ) is adjusted automatically 
according to the previous experiments of all harmonies. Consequently, the pitch adjustment step is used 
for suitable search in all iterations of the algorithm. This method ensures that HS algorithm achieves a 
good balance between diversification and intensification in the pitch adjustment step. In this method we 
also increase the sociality of HS algorithm, since the new selected variable is adjusted according to the 
previous experiments of all the harmonies. 

In this method, fixed high values are used for HMCR and PAR, because of a good balance between 
diversification and intensification in the first two rules of HS. In the proposed method, the value of 
HMCR=0.99 is chosen for all the examples to decrease the random selection probability to 1%, as a 
musician does not play any pitch out of the perfect pitches in his/her memory with a high probability. 
Also, in all the examples, the value of PAR is fixed on 1, the reason can easily be realized from the above 
discussion. Social HS has exactly the same steps as that of the HS, with the exception of step 3 which is 
modified as follows: 
 

while (i   number of decision variables (N)) 
   if (rand   HMCR) then (memory consideration) 
       j

ii xx  , where j ~ U(1, …, HMS) 
       if (rand   PAR) then (pitch adjustment) 
           ),( iii xNx    (pitch adjustment) 
       end if 
   else (Random selection) 
       )( iiii LBUBrLBx   
   end if 
end while 

 
Figure 1 shows the flowchart of the new harmony improvisation. As illustrated, the key difference 
between the social HS and the classic HS methods is in the pitch adjustment section.  
 

4. NUMERICAL EXAMPLES 
 
In this study, several standard benchmark optimization examples are utilized to show the superiority of the 
proposed method in quick convergence and finding better solutions compared to the original HS, its 
recently developed variants, and other optimization algorithms. This method is implemented in a 
FORTRAN computer program. 
 
a) Unconstrained function minimization examples 
 

The following uni-modal and multi-modal functions are used as unconstrained function minimization 
examples. All functions are implemented in 30 and 100 dimensions except for the two-dimensional 
Camel-Back function. There is a balance between uni-modal and multi-modal functions among our tests.  
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Random Selection               No  
 
 
 
 

Memory Consideration      Yes                                                          No 
 
                                                                       Pitch Adjustment                               
   
 
                                                                     
                                                                                                       Yes 
 
                                           Yes 
                            
 
 
                                                             No 
 
 
 

Fig. 1. The flowchart of the social harmony search algorithm (i=1 to N; N= number of decision variables) 
 

The Camel-Back function is a low-dimensional one with only a few local optimal, while Sphere, 
Rosenbrock, Schwefel’s Problem 2.22 and Rotated Hyper-ellipsoid are uni-modal functions. And finally, 
Ackley, Griewank and Schwefel’s Problem 2.26 are difficult multi-modal functions. 

Table 1 shows parameters for all methods. These values are suggested by Lee and Geem [4], Mahdavi 
et al. [6], and Omran and Mahdavi [10]. Table 2 summarizes the information of test functions. The initial 
harmony search is filled from a uniform distribution random in the feasible ranges specified in Table 2. 
Also, Table 3 shows the values of ξ that are used for these tests. For camel back function, 2.1  is 
adopted. 

 
1. Numerical results: The maximum number of evaluations of the objective function is limited to 50000 
iterations. The results obtained by all the algorithms in 30 and 100 dimensions are summarized in Tables 4 
and 5, respectively. The numbers show the average value of objective functions and standard deviations 
from 30 runs. The results for HS, IHS and GHS algorithms were reported by Omran and Mahdavi [10]. 
The best solutions among all algorithms are shown in bold. The results show that the proposed method 
outperformed HS and its derivation in all test examples. 
 

Table 1. Parameters for all the methods used for unconstrained problems 
 

Methods HMS HMCR PAR PARmin PARmax bw bwmin bwmax 
HS 5 0.9 0.3 − − 0.01 − − 
IHS 5 0.9 − 0.01 0.99 − 0.0001 1/(20 × (UB–LB)) 
GHS 5 0.9 − 0.01 0.99 − − − 
Proposed method 15 0.99 1 − − − − − 

 
 

HMCRran ()  

)(() iLBiUBraniLBix   

)1)()(int(  HMSranHMix  PARran ()  

),( iixNix    

ix  

iUPixiLB   

ix  

ixix   
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Table 2. Unconstrained functions 
 
Functions Function ange  x* f(x*) 

  n
i ixSphere 1

2  100100  ix   0,...,0  0 

 
  1
1

2)11(2)2
1(100n

i ixixixRosenbrock  3030  ix   1,...,1  0 

  


 n
i ix

n

i
ixAckley 1 )1exp(20))2cos(

30

1
exp(

1
)2

30

1
(2.0exp(20 

 

3232  ix   0,...,0  0 

1)1cos(1 4000

2)(
   n

i i
ixn

i
ix

Griewank  
600600  ix

 
 0,...,0  0 

sSchwefel '    n
i ixn

i ixoblem 1122.2Pr  1010  ix   0,...,0  0 

Rotated  21 1_     n
i

i
j jxellipsoidhyper  100100  ix

 
 0,...,0  0 

sSchwefel '     n
i ixixoblem 1 sin26.2Pr  500500  ix

 
 9687.420,...,9687.420
 

-12569.5 

Six Hump Camel 4
242

2421
6
13

14
11.22

14 xxxxxxxBack   55  ix   7126.0,08983.0  -1.0316285 

 
Table 3. The value of ξ 

 
 

 
Table 4. Mean and standard deviation of the benchmark functions optimization results in 30 dimensions 

 
 HS IHS GHS Proposed method 
Sphere 
 
 

1.87E–04 
(3.20E–05) 

7.12E–04 
(6.44E–04) 

1.00E–05 
(2.20E–05) 

1.40E–45 
(1.68E–45) 

Rosenbrock 3.40E+02 
(2.67E+2) 

6.24E+02 
(5.60E+02) 

4.97E+01 
(5.91E+01) 

3.66E+01 
(2.09E+01) 
 

Ackley 
 
 

1.13E+00 
(4.07E–01) 

1.89E+00 
(3.15E–01) 

2.10E–02 
(2.17E–02) 

3.92E–07 
(1.00E–07) 
 

Griewank 
 
 

1.12E+00 
(4.12E–02) 
 

1.12E+00 
(4.09E–02) 

1.02E–01 
(1.76E–01) 

7.68E–3 
(1.02E–2) 
 

Schwefel 2.22 
 
 

1.71E–01 
(7.28E–02) 
 

1.10E+00 
(1.81E–01) 

7.28E–02 
(1.14E–01) 

3.38E–42 
(3.40E–42) 

Rotated hyper-ellipsoid 
 
 

4.30E+03 
(1.36E+03) 

4.31E+03 
(1.06E+03) 

5.15E+03 
(6.35E+03) 

1.79E+01 
(9.34E+00) 

Schwefel 2.26 
 
 

–12539.237786 
 (1.2E+01) 

–12534.968625 
 (1.04E+01) 

–12569.458343 
 (5.04E–02) 

 –12569.48 
 (0.00E+00) 
 

Camel Back 
 

–1.031628 
 (0.00E+00) 

–1.031628 
 (0.00E+00) 

–1.031600 
 (1.80E–05) 

–1.031628 
 (0.00E+00) 

  ξ Sphere Rosenbrock Ackley Griewank Schwefel 2.22 Rotated hyper-ellipsoid Schwefel 2.26 

30 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

100 1.0 1.0 0.05 1.0 1.0 0.8 1.8 

Function 

 D
im

en
si

on
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Table 5. Mean and standard deviation of the benchmark functions optimization results in 100 dimensions 
 

 HS IHS GHS Proposed method 
Sphere 
 
 

8.68E+00 
(7.75E–01) 
 

8.84E+00 
(7.62E–01) 

2.23E+00 
(5.65E–01) 

3.65E–03 
(3.95E–03) 

Rosenbrock 
 
 

1.67E+07 
(3.18E+06) 
 

1.73E+07 
(2.94E+06) 
 

2.60E+06 
(9.16E+05) 
 

2.55E+02 
(5.53E+01) 
 

Ackley 
 
 

1.39E+01 
(2.85E–01) 
 

1.38E+01 
(5.30E–01) 
 

8.77E+00 
(8.80E–01) 
 

3.85E+00 
(1.66E+00) 
 

Griewank 
 
 

1.96E+02 
(2.48E+01) 

2.04E+02 
(1.92E+01) 

5.42E+01 
(1.86E+01) 

5.02E–02 
(5.16E–02) 

Schwefel 2.22 
 
 

8.30E+01 
(6.72E+00) 

8.25E+01 
(6.34E+00) 

1.90E+01 
(5.09E+00) 

1.24E–05 
(7.33E–06) 

Rotated hyper-ellipsoid 
 
 

2.15E+05 
(2.83E+04) 

2.138E+05 
(2.83E+04) 

3.22E+05 
(3.96E+04) 

3.48E+04 
(4.34E+03) 

Schwefel 2.26 
 

–33937.364505 
(5.72E+02) 

–33596.899217 
(7.31E+02) 

–40627.345524 
(3.95E+02) 

–14857.535333 
(7.54E+02) 

 
As mentioned, our test functions had a good balance between uni-modal and multi-modal functions. 

When the number of decision variables increases, the performance of all the methods decrease. However, 
the performance of the proposed method still remains the best. 

To compare the convergence rate of the proposed method with HS and its earlier derivation (IHS), we 
have chosen two functions from Table 2. These were the Griewank and Rotated hyper-ellipsoid. In this 
section the maximum number of iteration is limited to 20000 and also the dimension number is taken as 
100. The parameters of all methods are as in Table 1 and the values of   are similar to those in Table 3.  

For these functions the minimum solution is  0,...,0,0* x  with a function value equal 
to 0.0)( * xf . As shown in Fig. 2, the proposed method has a high convergence rate compared to the 
harmony search and improved harmony search algorithms. Additionally, the values of the final solutions 
in our method are closer to minimum solutions than the other two algorithms. These advantages are due to 
a good balance between diversification and intensification in the memory consideration and pitch 
adjustment sections. As shown, the present algorithm creates a high difference between its convergence 
trajectory with other algorithms even in earlier iterations. Additionally, as shown in Fig. 2, in high 
dimension problems IHS cannot beat the HS algorithm. 
 
b) Constrained engineering optimization examples 
 

In order to show the robustness and effectiveness of the proposed method, several constrained 
engineering examples are selected from the optimization literature. These test examples have been solved 
previously using a variety of other optimization algorithms.  
 
Example 1: A welded beam design 
The welded beam structure shown in Fig. 3 is a common practical design problem that is widely used for 
testing different optimization methods [14–18]. This structure consists of a beam A that is welded to 
member B. The goal is to find a feasible set of decision variables )1( xh  , )2( xl  , )3( xt  , and 

)4( xb   to sustain a certain load P, while minimizing the fabrication cost of the structure. The structure is 
subjected to constraints on shear stress )( , bending stress )( , buckling load )( cP , end deflection )( , 
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and side constraint. The mathematical formulation of the objective function )(xf 
, and its constraints are 

defined as follows: 
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Deb [14, 18] and Coello [19, 20] solved this engineering problem using GA-based methods. 
Radgsdell and Phillips [17] compared the optimal results of different optimization methods that were 
mainly based on mathematical optimization algorithms such as: APPROX, DAVID, GP, SIMPLEX, and 
RANDOM algorithms. Lee and Geem [4] solved this problem using the HSA, Mahdavi et al. [6] solved it 
using IHS method, and Fesanghary et al. [21] solved it using HHS method. Also, Kaveh and Talatahari 
[22] using ACO solved this problem. Table 6 shows the comparison of results. 

As shown in Table 6, the result of the proposed method, which is obtained after approximately 20,000 
iterations (0.0625 s) without violating any constraint, is the same as that reported by Mahdavi et al. [6] and 
Fesanghary et al. [21]. Notice that IHS, HS and HHS algorithms, respectively need 200,000, 110,000 and 
90,000 iterations to achieve this result. Additionally, HHS achieved this result in 4.138 seconds. Fig. 4 
provides a comparison of the convergence rates for the three algorithms (HS, IHS and the proposed 
method).  
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(a) Griewank 

 
 (b) Rotated hyper-ellipsoid  

Fig. 2.  Comparison of the convergence rates between the three algorithms for Griewank 
 and Rotated- hyper-ellipsoid functions with 100 dimensions 

 
Table 6. Optimal results for a welded beam design (N/A means not available) 

 
Method Optimal design variables (x) Cost 
 h                          l              t                          b   
Deb [14] N/A N/A N/A N/A 2.38 
Deb [18] 0.2489 6.1730 8.1789 0.2533 2.4328 
Coello [19] N/A N/A N/A N/A 1.8245 
Coello [20] 0.2088 3.4205 8.9975 0.2100 1.7483 
Ragsdell and Phillips [17]      
   APPROX 0.2444 6.2189 8.2915 0.2444 2.3815 
   DAVID 0.2434 6.2552 8.2915 0.2444 2.3841 
   GP 0.2455 6.1960 8.2730 0.2455 2.39 
   SIMPLEX 0.2792 5.6256 7.7512 0.2796 2.53 
   RANDOM 0.4575 4.7313 5.0853 0.6600 4.12 
Lee and Geem [4] 0.2442 6.2231 8.2915 0.2443 2.38 
Kaveh and Talatahari [22] 0.20570 3.47113 9.03668 0.20573 1.7249 
Mahdavi et al. [6] 0.20573 3.47049 9.03662 0.20573 1.7248 
Fesanghary et al. [21] 0.20572 3.47060 9.03682 0.20572 1.7248 
Proposed method 0.20573 3.47049 9.03662 0.20573 1.7248 
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Fig. 3.  A welded beam structure 

 

 
Fig. 4.  Comparison of the convergence rates between the three algorithms for welded beam design 

 
Example 2: A pressure vessel design 
Figure 5 shows a pressure vessel problem. This engineering problem was previously analyzed by Wu and 
Chow [23] using GA-based, by Lee and Geem [4] using HIS, by Sandgren [24] employing branch and 
bound method and by Kannan and Kramer [25] using an augmented Lagrangian multiplier approach. The 
objective is to find a feasible set of decision variables Ts (shell thickness, x1), Th (head thickness, x2), R 
(inner radius, x3), and L (shell length) as shown in Fig. 5, while minimizing the total cost of the material, 
forming and welding. Ts and Th are integer multiples of 0.0625 inch, the available thickness of the rolled 
steel plates, and R and L are continuous. The mathematical formulation of the objective function )(xf 

 
and its constraints are expressed as follows: 
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Table 7 compares the proposed optimum result to earlier solutions reported by other optimization 
algorithms. The proposed method achieves $7198.006 without violating any constraint. This result is 
better than all the earlier solutions. Figure 6 compares the convergence rate of the two algorithms (HS and 
proposed method). 

 
Fig. 5.  Schematic presentation of the pressure vessel 

 
Table 7. Optimal results for pressure vessel design 

 
Method Optimal design variables (x) Cost 
 )(1 sTx              )(2 hTx             )(3 Rx              )(4 Lx   

Wu and Chow [23]  1.125  0.625  58.1978 44.2930 7207.494 
Sandgren [24]  1.125  0.625  48.97 106.72 7980.894 
Kannan and Kramer [25]  1.125  0.625  58.291 43.6900 7198.043 
Lee And Geem [4]  1.125  0.625  58.2789 43.7549 7198.433 
Proposed method  1.125  0.625  58.29015 43.69269 7198.006 

 
As shown in Fig. 6, the proposed method obtains a better result than HS algorithm after about 20000 

iterations.  

 
Fig. 6.  Comparison of the convergence rates between the three algorithms for pressure vessel design 

 
Example 3: Minimization of the weight of a spring 
This problem is described by Arora [26], Coello [27] and Belegundu [28]. It consists of minimizing the 
weight of a tension/compression spring subjected to constraints on shear stress, surge frequency and 
minimum deflection as shown in Fig. 7. The design variables are the mean coil diameter D(=x1), the wire 
diameter d(=x2) and the number of active coils N(=x3). The problem can be defined as 
 

Minimize 2
123 )2()( xxxxf 


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Fig. 7.  A tension/compression spring 

 
This problem has been solved by Belegundu [28] using eight different mathematical optimization 

techniques (only the best results are shown). Arora [26] has also solved this problem using a numerical 
optimization technique called constraint correction at the constant cost. Coello [20], as well as Coello and 
Montes [29] solved this problem using a GA-based method. Additionally, He and Wang [30] solved this 
problem using a Co-evolution strategy Particle Swarm Optimization (CPSO). Recently, Montes and 
Coello [31], Kaveh and Talatahari [22] and Mahdavi et al. [6] solved this problem, respectively using 
evolution strategies, an improved ant colony optimization and IHS method. 

The result obtained using the proposed method is better than those reported previously in the 
literature. Table 8 shows a comparison of the results. 
 

Table 8. Optimal results for minimization of the weight of the spring 
 

Method Optimal design variables (x)  Cost 
 x1(d) x2(D) x3(N)  
Belegundu [28] 0.050000 0.315900 14.250000 0.0128334 
Arora [26] 0.053396 0.399180 9.185400 0.0127303 
Coello [20] 0.051480 0.351661 11.632201 0.0127048 
Coello and Montes [29] 0.051989 0.363965 10.890522 0.0126810 
He and Wang [30] 0.051728 0.357644 11.244543 0.0126747 
Montes and Coello [31] 0.051643 0.355360 11.397926 0.012698 
Mahdavi et al. [8] 0.051154 0.349871 12.076432 0.0126706 
Kaveh and Talatahari [22] 0.051865 0.361500 11.000000 0.0126432 
Proposed method  0.051750 0.358689 11.156588 0.0126382 

 
It is obvious from Table 8 that the proposed method achieves a better result than those reported 

previously in the literature. This result is obtained after 3000 iterations. Fig. 8 compares the convergence 
rate of the two algorithms (IHS and proposed method). The convergence rate of the proposed method is 
better than IHS algorithm. 

Table 9 shows the parameters of the proposed method that are used for all engineering examples.  
Recently, adaptive HS has also been developed, and does not require the selection of HMCR and 

PAR by the user [32, 33]. 
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Fig. 8.  Comparison of the convergence rates between the three algorithms 

 for minimization of the weight of spring 
 

Table 9. Parameters of the proposed method used for the engineering examples 
 

Method HMS HMCR PAR PARmin PARmax bw bwmin bwmax               
Social HS 15 0.99 1 − − − − −                 3.0 

 
Applications of other meta-heuristics can be found in the work of refs. [34-36]. 

 
c) Effect of the parameter  
 

Here we used   to adjust  . This is an important parameter in the pitch adjustment section. If we 
use a big value for  , normal distribution will perform a similar global search in each step of the search 
and a desirable solution will not be obtained in a small number of iterations. On the contrary, if   is 
selected too small, the algorithm searches a fraction of feasible space, causing a premature convergence 
and preventing the algorithm from finding the global optimum. In order to make a good balance between 
diversification and intensification in pitch adjustment section, a fixed value of   between “0.5 to 3” is 
used.  
 

5. CONCLUDING REMARKS 
 
In the proposed method a procedure is introduced to obtain a good balance between diversification and 
intensification in the pitch adjustment section of HS. To achieve this goal a normal distribution rule is 
employed. Since variance of normal distribution for each decision variable is related to diversity of their 
previous value sorted in the harmony memory, their diversities are high in early iterations and gradually 
decrease when the algorithm reaches its final iterations. Hence, it makes global and local search in early 
and final iterations, respectively. 

This is because of diversity and the uniformity of values of decision variables in the harmony 
memory, respectively. Also, in this method the sociality of the HS algorithm is increased by selecting 
variable form harmony memory adjusted according to the previous experiments of all the harmonies. 
Additionally, a fly-back mechanism is utilized to ensure that the optimum results are in the feasible space. 
Finally, the numerical examples reveal the superiority of the proposed method in quick convergence and 
find better solutions compared to the classic HS and its variants. 
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