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Abstract– In this paper, application of stress fields in computation of seismic active lateral forces 
on retaining walls is considered using the lower bound method of limit analysis. Finding the exact 
solution of boundary value problems in engineering fields is a complicated problem in most 
applied cases and from this point of view, use of the limit state methods is very beneficial for 
engineers. In limit analysis method, in spite of exact solution of the problem, the upper and lower 
bound of the limit load are determined. The lower bound of the exact solution can be obtained by 
use of different admissible stress fields in different regions of the media divided by stress 
discontinuity surfaces. Earthquakes have unfavorable effects of increasing active and decreasing 
passive lateral earth pressure, so to investigate how the lateral earth pressure is affected, extensive 
numerical results based on the limit analysis method reported by Chang and Chen. This paper is 
devoted to finding an Analytical solution to investigate the lateral force affection on retaining 
walls, using mathematical relations based on lower bound limit analysis method. This process 
include the calculation of direction and magnitude of active lateral earth pressure. Numerical 
results of the proposed algorithm are presented in some practical dimensionless graphs.           
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1. INTRODUCTION 
 

Since the earthquake motion is of an oscillatory nature, dynamic analysis of lateral earth pressure is 
certainly more realistic. However, dynamic analysis involves many uncertainties, e.g. the extent of soil 
mass effectively participating in vibrations that are not yet wholly understood. 

Furthermore, providing the necessary information for a dynamic analysis and performing such an 
analysis are relative expensive. Quasi-Static analysis using the seismic coefficient concept is therefore of 
greater practical value in many cases, although the assessment of the seismic coefficient still relies highly 
on past experiences. The well-known Mononobe-Okabe analysis of seismic lateral earth pressure was 
proposed by Mononobe and Matsuo [1] and Okabe [2]. The analysis is a direct modification of the 
coulomb wedge analysis. In the analysis, the earthquake effects are replaced by a quasi-static inertia force 
whose magnitude is computed on the basis of the seismic coefficient concept. As in the coulomb analysis, 
the failure surface is assumed planer in the Mononobe-Okabe method, regardless of the fact that the most 
critical sliding surface may be curved. Similar to the coulomb’s, the Mononobe – Okabe analysis may 
underestimate the active earth pressure and overestimate the passive earth pressure. In this paper, the 
lower-bound method of limit analysis is applied to include the earthquake effect which is investigated in 
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producing some dimensionless charts for computing the seismic active earth pressure. As stated in the 
lower-bound theorem, if an equilibrium state of stress below yield can be found which satisfies the stress 
boundary conditions, then the loads imposed can be carried without collapse by a stable body composed of 
elastic-perfectly plastic material [3, 4]. Any such field of stress thus gives a safe or lower bound on the 
collapse or limit load. The stress field satisfying all these conditions is called statically admissible stress field. 
In this paper, the following steps are investigated: First, the lower bound of limit analysis method and the 
principles are defined. Second, the new formulations based on mathematical relations are introduced and a 
comparison between the results of this new analytical algorithm and the well-known methods such as 
Mononobe-Okabe is done. Finally, some practical dimensionless diagrams for calculating the active seismic 
coefficient of retaining walls with considerable accuracy are presented. 
 

2. THEOREMS OF LIMIT ANALYSIS 
 
Figure 1 shows a typical load-displacement curve as it might be measured for a surface footing test. The 
curve consists of an elastic portion; a region of transition from mainly elastic to mainly plastic behavior; a 
plastic region, in which the load increases very little while the deflection increases manifold; and finally, a 
work-hardening region. In a case such as this, there exists no physical collapse load. However, to know the 
load at which the footing will deform excessively has obvious practical importance. For this purpose, 
idealizing the soil as a perfectly plastic medium and neglecting the changes in geometry lead to the condition 
in which displacements can increase without limit while the load is held constant as shown in Fig.1. A load 
computed on the basis of this ideal situation is called plastic limit load [5, 6].This hypothetical limit load usually 
gives a good approximation to the physical plastic collapse load or the load at which deformations become 
excessive. The methods of limit analysis furnish bounding estimates to this hypothetical limit load. 
The theorems of limit analysis can be established directly for a general body if the body possesses the 
following ideal properties: 

 
 

 
Fig. 1. Load-displacement Curve 

 
1. The material exhibits perfect or ideal plasticity, i.e., work hardening or work softening does not 

occur. This implies that the stress point cannot move outside the yield surface. 
2. The yield surface is convex and the plastic strain rates are derivable from the yield function 

through the associated flow rule. 
3. Changes in the geometry of the body that occur at the limit load are insignificant; hence the 

equations of virtual work can be applied. 
 

In summary, the limit load is defined as the plastic collapse load of an ideal body having the ideal properties 
listed above, and replacing the actual one. 
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3. THE LOWER BOUND METHOD 
 
The lower-bound method of limit analysis is different from the upper-bound method in that the equilibrium 
equation and yield condition instead of the work equation and failure mechanism are considered [7, 8]. 
Moreover, whereas the development of the work equation from an assumed collapse mechanism is always 
clear, many engineers find the construction of a plastic equilibrium stress field to be quite unrelated to physical 
intuition. Without physical insight there is trouble in finding effective ways to alter the stress fields when they 
do not give a close bound on the collapse or limit load [9-12]. Often the user employs the existing stress fields 
from well-known texts or the more recent technical literature as a magic handbook and tries to fit his 
problem to the particular solutions he finds. Intuition and innovation seem discouraged by unfamiliarity and 
apparent complexity [13-14]. Although the discontinuous fields of stress which will be drawn and discussed in 
this Section are simpler to visualize, they too are not often employed in an original manner by the design 
engineer [15-16]. Yet the concepts are familiar to the civil engineer in his terms and can be utilized by the 
designer as a working tool. 
The conditions required to establish such a lower-bound solution are essentially as follows: 

a. A complete stress distribution or stress field must be found, everywhere satisfying the 
differential equation of equilibrium. 

b. The stress field at the boundary and discontinuities must satisfy the stress boundary 
conditions. 

The stress field must nowhere violate the yield condition.  
 

4. ANALYTICAL SOLUTION 
 
The typical 2D wall geometry for the problem of this paper is shown in Fig. 2. Assuming a discontinuity 
surface, Fig. 2 shows the variation of stresses in the vicinity of the wall (zone A) and beyond the 
discontinuity surface (zone B). The final target of the calculations is leads to the evaluation of Pah and Pav 
which are the stresses subjected to the earthquake affected on the wall. In this solution the following 
relation is assumed. 

t an( )
tan( )

w wC
C

f
f

=  

 
In which, c and Φ are known as the strength parameters of the material; c represents the cohesion and Φ 
represents the angle of internal friction. cw is the cohesion and Φw is the internal friction angle between the 
wall and soil. Knowing the stresses quantities in element B, Fig. 3 is drawn. 

 

 
 

Fig. 2. Stress discontinuity surface, zones A and B  
 

The Mohr circle center and radius are considered as Sa,Sb and ra,rb respectively for zones A and B. 

B A 

γz 

kh.γz 

X 

 Z 

Pav 

Zone B Zone A 

Pah 



A. Totonchi et al. 
 

IJST, Transactions of Civil Engineering, Volume 36, Number C2                                                                                August 2012 

198 

 
Fig. 3. Assuming Sb as (x, 0) 

     
(1) 

(2) 

 
Combining (1) & (2) results in: 

2 2 2 2 2( . cot ( )) . sin ( ) ( . ) ( ) (2 ).( ) ( . )hx c z x z x k zf f g g g+ = + - +   (3) 

Expanding Eq. (3) leads to: 

2 2 2 2 2( ) ( 1) (2 . . 2 ) ( . ( . ) ) 0x sin x c cos sin z c cos kh zf f gf f g- + + + - =      (4) 

Where .As Sb and rb are calculated, the Mohr circle of zone-B is drawn (Fig. 4). 

 
Fig. 4. Mohr circle in zone part B 

 
The soil is modeled by Mohr-Coulomb yield criterion with various quantities of friction angle and soil 
cohesion.In a direct application of the Mohr-Coulomb criterion for plane strain stability problems, it is 
implicitly assumed that the strength of the soil along the failure surface is fully mobilized everywhere 
along the surface. This is probably the case in most laboratory tests in which the tested specimen is 
assumed representative of a soil element in the soil mass. This is because the specimen is generally so 
small that the strain is practically considered uniform along the failure surface, although boundary 
restrains do exist in almost all tests. For simplicity, the effect of seepage (or pore pressures) on the 
stability of cohesive-frictional soils has not been included in this study. It is also possible to incorporate 
the effect of pore pressures in limit analysis [17, 18], but this extension is not being covered here. The 
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position of stresses of zone B is shown in Fig. 3. The relation of Mohr circle center and radius of zone-B 
can be expressed by: 

In Fig. 4Pb is the pole of Mohr circle of zone-B. For computation of the angle between Pb and the 
principle surface (α) in the Mohr-circle of zone B, using geometrical relations leads to the following 
equations: 
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Substituting rb in the above equation leads to: 
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Fig. 5. Assumed Mohr circle in zone part A 

 
Dismounting the wall specifications, the Mohr-circle of zone-A is drawn (Fig (5)). Using Fig (5) results in 
the following equations: 
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Combining (4) & (6) results in: 
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Considering β as an angle through zone-A stresses surface and principle surface, the rotation angle of 
stresses from zone A to B will become: 
 

 
Fig. 6. β recognition for calculating the rotation angle of stresses from zone B to A 
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From Figs. 5 and 6,  is defined as the following equation (Fig (7)): 
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Substituting α and β in the above equation leads to: 
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In which δθ is rotation angle of stresses from zone B toA. Using the relation between the two center points 
of the Mohr-circles of zones A and B, reported by Chen and Chung [19], following equations are derived. 
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Fig. 7. δθ recognition (rotation angle of stresses from zone B to A) 

 
Knowing the quantities of the ra and Sa, Mohr-circle of element A is drawn. According to Fig.8, 

depicted by a line through the intersection point of circles (M) and pole B (Pb) and extending it, the pole of 
the Mohr-circle in zone A appears, which leads to attaining the target.  

In summary, the calculation algorithm of pah is defined as follows: 
 

1- Calculation of Sb, rb and α using Eqs. (2), (4) and (6). 
2- Calculation of β using Eq. (12). 
3- Determining the rotation angle between the Mohr-circles (δθ=β-α) then use of Eqs. (14) and (16) for 

calculation of Sa and ra, respectively. 
4- Drawing the Mohr-circles, finding the pole of the element in zone A which leads to the calculation of 

pah. 
 

The next section discusses the comparison of this mathematical solution and Mononobe-Okabe 
Method which results in some tables and graphs. 

    

 
Fig. 8. Computation of active seismic stresses on retaining wall 
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5. COMPARISON BETWEEN RESULTS 
 
The Mononobe-Okabe analysis [20, 21], which is an extension of the coulombs analysis, has been 
experimentally proved by Mononobe-Matsuo [4, 6] to be effective in assessing the seismic active earth 
pressure. It is generally adopted in the current a seismic design of rigid retaining walls. The Mononobe-
Okabe solution is therefore practically acceptable, at least for the active pressure case, although its 
applicability to the passive pressure is somewhat in doubt. 

In this section, some results on seismic active pressures as obtained by the present Analytical method 
are comparedwith the method ofMononobe-Okabe (M-O), which leads to tables 1 to 4. Comparing the 
current results with these methods, good agreement is found among them. 

In the following tables, kh is horizontal seismic coefficient, δ is friction angle between the wall and 
soil in the Mononobe-Okabe method and KAE is active seismic lateral pressure coefficient. 

 
Table 1. Comparison of KAE for C=0, Φw=Φ/2, Kh=0.15, Kv=.075, H=5 m, γ=17.6 kN/m3 

Φ 
δ KAE KAE 

Φw M-O Analytical  
Solution 

10 5 0.928 0.926 
16 8 0.697 0.693 
20 10 0.598 0.598 
26 13 0.481 0.481 
28 14 0.448 0.446 
30 15 0.417 0.416 
32 16 0.389 0.386 
36 18 0.337 0.337 
38 19 0.313 0.311 
40 20 0.292 0.292 

 
Table 2. Comparison of KAEfor C=0, Φw=Φ/2, H=5 m, γ=17.6 kN/m3 

   
KAE 

Kh Φ Φw M-O Analytical  
solution 

0.1 30 15 0.373 0.373 
0.2 30 15 0.467 0.466 
0.3 30 15 0.595 0.595 
0.1 10 5 0.795 0.795 
0.2 10 5 1.036 1.036 
0.3 10 5 0.996 0.996 
0.1 40 20 0.257 0.257 
0.2 40 20 0.33 0.33 
0.3 40 20 0.425 0.425 

 
So it has been found that the application of limit analysis forcohesionless soil stability problems is 

practically acceptable. The determination of the seismic lateral earth pressure of a fill on a retaining wall, 
when frictional forces act on the back of the wall, is solved conveniently by this analytical method. 
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As seen, the results of Analytical solution and Mononobe-Okabe are practically identical for most 
cases. By checking the results of Chung & Chen, which are based on upper bound method of limit 
analysis, it seems that the exact result has a negligible difference with the results of this method. 

 
Table 3. Comparison of KAEfor C=0, Φw=Φ/2=15o, H=5 m, γ=17.6 kN/m3 

Kh 
Analytical  
Solution M-O Chen and 

Chung 

0.1 0.373 0.373 0.4 

0.2 0.466 0.467 0.49 

0.3 0.595 0.595 0.62 

 
Table 4.Comparison of active lateral pressure for Φ=30o, γ=18 kN/m3 

C(kPa) Z(Meter) Rankin Analytical 

10 
0 -11.489 -11.455 

10 47.91 47.788 

20 
0 -22.978 -22.97 

10 36.421 36.419 

30 
0 -34.467 -34.454 

10 24.932 24.912 

 
6. NUMERICAL RESULTS 

 
The lower bound solutions obtained can be applied directly in practice and one of the most usable 
applications of this study is the possibility of introducing some practical dimensionless diagrams for 
calculating the active seismic lateral pressure coefficient of retaining walls with considerable accuracy. 
Figures 9 to 11 illustrate the active seismic lateral force in various quantities of friction angle and cohesion 
of the soil and soil-wall. The dimensionless parameters presented are defined as: 

 

'

/

/

H c

P P Hc

l g=

=
 

 
Where γ is soil unit weight, H is the wall height, c is the cohesion of the soil fill at the back of the wall and 
P is the seismic lateral force which affects the wall. For each seismic coefficient, the results for three 
different λ of 3, 5 and 10 are given. To account for the effect of cw and Φwthe results are presented in terms 
of cw of 0.2, 0.3 and 0.8. As Figs. 9 to 11 show, by increasing the soil friction angle, the seismic active 
force is decreased, as expected. Comparing Figures, it seems that for a given λ the active seismic force will 
increase with increasing cw/c. Also, it seems that increasing in λ and kh, leads to increase the seismic lateral 
force (P). 
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Fig. 9. Dimensionless diagram for calculating the active seismic lateral force, Kh=0.1 

 

 

 
Fig. 10. Dimensionless diagram for calculating the active seismic lateral force, Kh=0.2 
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Fig. 11. Dimensionless diagram for calculating the active seismic lateral force, Kh=0.3 

 

 
Fig. 11. Dimensionless diagram for calculating the active seismic lateral force, Kh=0.3, (Continue) 

 
7. EXAMPLE OF APPLICATION 

 
Now, how the results in Figs. 9 to 11 can be used to determine the seismic active lateral force is 
illustrated.  

Problem. A wall is built back of a soil which has the following parameters, the height of the wall H=5 
m, the soil unit weightis γ=15 kN/m3, the soil’s strength parameters c=10kN/m2, Φ=30 and the soil-
wallcohesion cw=5 kN/m2. For a seismic coefficient of kh=0.1, what is the amount of seismic active 
lateral force? 

A procedure for using the results of the presented study to solve the forgoing problem can be 
summarized as follows: 

1- From the value of γ, H and c, the dimensionless parameter λ=γH/c= 7.5 is calculated. 
2- With kh=0.1 and cw/c=0.5, it follows that the results presented in Fig. 9a should be used to 

determine the force. 
3- In Fig. 9a, a straight-vertical line passing through λ=7.5 is drawn. This straight line will intersect 

with three curves from which the intersection point of curve with Φ=30 and cw/c=0.5 is selected. 
4- From this intersection point, it can back-figure the following dimensionless parameter P’ from 

which the lower bound solution of the seismic active force can be calculated as P= -11.23kN/m. 
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8. CONCLUSION 
 

The active seismic lateral pressure on the retaining wall is investigated in this paper. An Analytical 
solution is introduced based on lower bound limit analysis method and the solution is compared to the 
well-known methods such as Mononobe- Okabe and Chung and Chen, whose results are close to each 
other. Some practical dimensionless diagrams for calculating the active seismic coefficient of retaining 
walls with considerable accuracy are presented. The results show that by increasing the soil friction angle, 
the seismic active force is decreased, as expected. Comparing diagrams, it seems that for a given λ=γH/c 
the active seismic force will increase with increasing cw/c. Also, it is found that an increase in λ and kh, 
leads to an increase in the seismic lateral force. 
 

NOMENCLATURES 
 

c  cohesion 
cw  cohesion between soil and wall 
Φ  internal friction angle 
Φw  internal friction angle between soil and wall 
γ  soil unit weight 
z  height 
Pav  vertical active seismic lateral pressure 
Pah  horizontal active seismic lateral pressure  
Sa  center point of Mohr-circle in zone A  
Sb  center point of Mohr-circle in zone B 
ra  radius of Mohr-circle in zone A 
rb  radius of Mohr-circle in zone B 
Pa  pole of zone-A 
Pb  pole of zone-B 
α  angle between Pb and the principle surface 
β  angle between Pa and the principle surface 
δθ  rotation angle of stresses from zone B to A 
M  Intersection of Mohr-circles 
Kh  Seismic coefficient 
λ  dimensionless parameter =γH/c 
P  seismic lateral force 
p’  dimensionless parameter =p/Hc 
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