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Abstract– A new analytical procedure taking into account the non-uniform outflow profile for 
hydraulic analysis and design of multiple outlets pipelines is presented. The method is developed 
based on presenting a new friction head loss distribution along the lateral. The proposed method 
simulates pressure and outflow profiles along the trickle or sprinkler irrigation laterals and 
manifolds, as well as gated pipes. The velocity head change was considered, whereas minor head 
losses were neglected. The presented technique was compared with the accurate step by step (SBS) 
method to justify its accuracy for lateral design. The comparison test for various design 
combinations indicated that the proposed method is sufficiently accurate. The suggested method 
could be applied in designing irrigation laterals.          
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1. INTRODUCTION 
 

Pressurized pipelines with multiple outlets are used extensively in irrigation systems (sprinkler, trickle or 
gated irrigation laterals and manifolds). A detailed hydraulic analysis of multiple outlets pipelines is very 
important for design and evaluation purposes. Nowadays, the increasing progress in computer technology 
has led to the development of numerical methods [1-4] which allow easy evaluation of head losses along a 
lateral. These models, however, have a high level of sophistication and require extensive programming 
and perhaps, long computer-execution time [5].  

The previous hydraulic analyses are based on the assumption that outlet discharge along a lateral line 
is constant [6]. This case is represented by all types of solid-set, portable or mechanically movable linear 
sprinkler systems, as well as most trickle irrigation systems and gated pipes for surface irrigation [7]. This 
technique is simple, but is subject to certain errors as the energy grade line (EGL) is determined by the 
assumption of constant emitter outflow [8]. Based on this analysis of possible errors, for a turbulent flow 
emitter and an emitter flow variation equal to or less than 10%, the simple EGL approach is used for drip 
irrigation design. For non-turbulent flow emitters or when the emitter flow variation is larger than 10%, 
designs can be made by using an adjusted total discharge or revised energy gradient line (REGL) approach 
[8, 9]. The application of analytical EGL (or REGL) method is very easy; however, it has a limitation of 
application region due to constraints in emitter flow regimes and emitter flow variation along the lateral 
[10].  

An alternative treatment in trickle laterals, presented by Yitayew and Warrick [11], uses a nonlinear, 
second-order, ordinary differential equation, which includes a spatially variable discharge function. It 
dismisses the assumption of uniform emitter flow along the lateral, as suggested by Keller and Bliesner 
[12] and Wu and Gitlin [13]. This method, however, requires numerical solution of a nonlinear, second-
                                                        
Received by the editors May 11, 2011; Accepted December 11, 2011. 
Corresponding author 
 
 



S. H. Sadeghi et al. 
 

IJST, Transactions of Civil Engineering, Volume 36, Number C2                                                                                August 2012 

210 

order differential equation. Vallesquino and Luque-Escamilla [14] and Vallesquino [15] proposed the 
successive-approximation method (SAM) for solving lateral hydraulic problems for laminar or turbulent 
flow. Yildirim [10] reported that the SAM method can be suitable for didactic applications since the 
solution requires long execution time and calculation effort. 

A more practical analytical approach that takes into account the spatial variation of outlet discharge is 
presented by Valiantzas [5]. This method was then used in several researches for hydraulic design of 
irrigation pipelines [10, 16, 17]. 

In the present study, a new analytical form for the friction head loss function was presented. This is a 
new, simple, yet accurate analytical solution for designing multi-outlet irrigation laterals in different flow 
regimes and uniform slope cases. 
 

2. THEORETICAL BACKGROUND 
 
a) Traditional continuous approach- uniform outflows 
 
Traditionally, flows in multiple outlet irrigation laterals and manifolds are considered to be steady and 
spatially varied flow. The discharge along the direction of flow decreases incrementally as the outlets, 
sprinklers, or emitters discharge water along the lateral. The hydraulics of these laterals and manifolds are 
usually evaluated by assuming a constant outflow qav per unit length so that the flow rate at any position x 
is given by: 
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L
xQxQ in                                                                              (1) 

 
In Eq. 1, Qin is the total flow rate into the inlet of the lateral and L is the lateral’s total length.  

The head loss gradient or slope of EGL at point x, Sf (x), can be approximated by Darcy-Weisbach 
formula: 
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where Hf (x) is head loss at a distance x (m), k is roughness coefficient, f  is friction head loss, D is lateral 
or manifold diameter (m), and m is an empirical constant.   

For plastic pipes (PVC or PE), 
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in which υ is kinematic viscosity and a1 is a constant. For laminar flow (Reynolds Number R < 2000), m 
=1 and a1 = 0.64; for turbulent flow in a smooth pipe (3000 < R < 105), m = 1.75 and a1 = 0.316; for fully 
turbulent (R > 105), m = 1.828 and a1 = 0.13.  

For aluminum pipes, the appropriate formula such as well-known Churchill equation [18] can be used 
to estimate the friction coefficient f: 
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where P and Q are empirical parameters for computing Darcy-Weisbach friction coefficient and are given 
as: 
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where parameter ε is absolute roughness height of the internal pipe surface. 

Substituting the expression for Q(x) in Eq. (1) into Eq. (2) and then integrating between the limits 0 
and x yields: 
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where Hfo is total friction loss of a similar pipe transmitting the entire flow over its length. Thus, at the end 
of the lateral (x = 0), total head loss, Hf, is:
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which allows Eq. (7) to be written as: 
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Christiansen [19] introduced the concept of a friction correction factor, Fc, to adjust Hfo for multiple 

outlets pipes as follows:  
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The value of Fc is determined by the following relation: 
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where N is the number of outlets along the lateral assuming the first one is located one outlet spacing away 
from the lateral inlet. 
 
b) Non-uniform outflow, ignoring outlet hydraulics 
 

The traditional approach considers neither the hydraulic characteristics of the outlets themselves, nor 
the effect of lateral slope or conditions where flow regime- indicated by parameter m- might change along 
the lateral. Where pressure compensating emitters and sprinklers are used, the assumption of constant 
outlet flow is appropriate and the foregoing analysis can be applied (Walker, 2010, private 
communication).  However, most systems employ emitters and sprinklers that do not have pressure 
compensating features and their discharge is related their hydraulic characteristics and the pressure 
distribution in the lateral pipe.  Consequently, it is useful to develop a more general analytical concept. 
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Yidirim [10] as well as Valiantzas [20] approached this problem by assuming a non-linear distribution 
of outlet flows. However, an alternative that allows the inclusion of outlet hydraulic characteristics is to 
represent the friction head drop distribution along the lateral by a power function: 
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xHxH ff                                                                       (12) 

 
where φ is an empirical exponent. Following the same procedure used above to formulate Eq. (7): 
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Substitution of Hf from Eq. (10) into Eq. (13), equating with the first right hand side term of Eq. (2) and 
rearranging for Q(x) yields: 
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It is worth noting that although Hf in Eq. (10) represents a constant outflow concept, its substitution 

into Eq. (13) is logical since a recent study by Sadeghi et al. [21] has demonstrated that the non-uniformity 
of outflow along the lateral does not significantly change the value of Fc given by Christiansen [19].  

Considering Eq. (14), at the pipe inlet (x = L), Q(x) = Qin and ignoring the hydraulic characteristics of 
the outlets, it is seen that:   
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Equation (15) demonstrates that the nonlinear distribution of flow along the lateral (i.e., Eq. (14)) 

depends not only on the flow regime, but also on the number of outlets. With the value of φ defined by Eq. 
(15), the resulting form of Eq. (14) is: 
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As noted, λ allows Eq. (16) to simulate the lateral pipe flow when the individual outlets do not have a 
uniform discharge. However, when λ = 1, Eq. 16 is the same as Eq. (1). Thus, φ = m+1 when the outlets 
have a uniform discharge along the lateral and φ =1/Fc when the uniform discharge assumption is invalid. 

Figure 1 demonstrates distribution of flow in a lateral pipe as a function of number of outlets, each 
discharging an equal flow (Eq. (1)). Also, in this figure, the non-uniform flow distribution described by 
Eq. (16), as well as the recent contributions by Valiantzas [20], are shown. It can be observed that the 
profile presented by Eq. (16) lays between Eq. (1) and that of Valiantzas [20]. But when the number of 
outlets reaches 30, the three models are nearly the same and are indistinguishable at N = 100. 

The friction loss variation along a lateral for various numbers of outlets (N= 2, 5 and 10) is shown in 
Fig. 2 for four models: Eq. (9), Eq. (10), Eq. (12), and direct stepwise procedure (SBS) with a uniform 
outflow assumption. Again, it can be observed that there exists a slight difference between friction loss 
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gradient assuming a non-uniform outlet flow and the stepwise method assuming a uniform outlet flow. 
These differences become negligible as the number of outlets increases.  

     
                                                        

                
Fig. 1. Outflow profiles by the proposed function and traditional approach for N= 2, 10, 30 and 100 and m=2 

   
Fig. 2. Friction head loss function by the proposed equation and traditional approach (N=2, 5 and10 and m=1.852) 

 
c) Non-uniform outflows, including outlet hydraulics 
 

The pressure head H at any point x along the lateral is given by:  
 

)()()( 0 xHxSxHHxH vfd                                                       (18) 
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where Hd is pressure head at the downstream end of the lateral pipe, Hv(x) is velocity head gradient and S0 
is ground slope, which is assumed to be uniform along the lateral length. Laterals laid on downhill slope 
have positive values for S0, since x is measured from the downstream end of the lateral. If it is initially 
assumed that φ = 1/Fc and Vin represents the average flow velocity at the lateral inlet (m/sec), then from 
Eq. 16 the flow velocity distribution can be written as: 
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The velocity head (m) in the lateral pipe, Hv(x), can therefore be expressed as: 
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The average pressure head along the lateral can be found by substituting Eqs. (12) and (20) into Eq. 

(18), integrating each term between 0 and L, and then dividing by L: 
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Subtracting Eq. (21) from Eq. (18) gives the distribution of pressure head in the lateral as a function of 
average pressure head: 
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Equation (22) defines pressure head along an irrigation lateral and demonstrates the dependence of this 
head on the number of outlets (φ = 1/Fc) and flow regime, m. The question remains of what impact might 
outlet hydraulics have on distribution of pressure and flow along the lateral?   

The actual value of λ can be determined directly from Eq. (16). Following the suggestion of 
Valiantzas [5], Eq. (16) can be written for the lateral midpoint and then solved for λ. The resulting 
expression is:   
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where, Q0.5 is total discharge entering the lower half of the lateral (m3/sec). The average value of pressure 
head over the lower half of lateral, H0.5, can be derived by integrating Eq. (22) between 0 and L/2, dividing 
by L/2 and substituting 1/Fc for of φ: 
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For simplicity, Eq. 24 can be rewritten as: 
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and, 
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The discharges through most pipe outlets that are not pressure-regulated are generally governed by an 
orifice relationship of the following type: 

yin cH
N

Qq                                                                            (28) 

In Eq. (28), q is discharge through an outlet, H is opening pressure head of the outlet, and c and y are 
rating coefficients. The average outlet flow from the lower half of the lateral, qav|0.5, can be estimated by 
the average pressure head Hav|0.5 as: 

y
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                                                                      (29) 
 

On the other hand, total discharge, Q0.5, passing through the lateral section located at distance x0=L/2 
represents the summation of discharge of all emitters located between x=0 and x=L/2. Consequently it can 
be calculated as: 
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Substituting Eq. (25) in Eq. (29) and then substituting the result in Eq. (30) yields: 
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Total discharge at the inlet of the lateral is calculated as a function of average outlet flow along the 
entire lateral, qav, and the total number of outlets: 
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Finally, the actual or adjusted value of λ, λadj, is derived by substituting Q0.5 and Qin from Eqs. (31) and 
(33) into Eq. (23): 
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Similarly, an actual or adjusted value of φ can be determined by substituting λadj for λ of Eq. (33) into Eq. 
(17):  
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Distribution of energy and discharge along the lateral can now be defined using the values of λadj and 

φadj by modifying Eqs. (12) and (16): 
 



S. H. Sadeghi et al. 
 

IJST, Transactions of Civil Engineering, Volume 36, Number C2                                                                                August 2012 

216 

adjadj

L
xHF

L
xHxH fCff

 )()()(
0


                                          

(35) 
   

m

in

adj

L
xQxQ

1

)(













                                                          (36) 

  
d) Modified EGL 
 

From the above analysis it may be concluded that for a pipeline with multiple outlets the energy line 
can be determined by Eq. 22, if φ is replaced by φadj and the following data are known: diameter D, 
roughness coefficient in Eq. 2, slope S0, number of outlets N, spacing s and the outlet discharge 
coefficients c and y.  
 
e) Determination of uniformity coefficients (Uc and DULQ ) 
 

The Christiansen coefficient of uniformity, UC, is used here to express uniformity of outlet discharge. 
Using statistical analysis, Valiantzas [5] has shown that the coefficient of variation of outlet discharge is 
related to the variance of pressure head along the lateral as: 
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where CV= (qvar)1/2/qav is coefficient of variation, and qvar is variance of outlet discharge along the lateral. 
The UC is related to CV by: 

CVU c 798.01                                                                (38) 

The variance of pressure head profile between the pipe segments x = 0 and x = L can be expressed as [22]: 
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where DEVx is deviation between H(x) and Hav at any distance x from the closed end of the pipeline. 
Substituting Hav from Eq. 22 into Eq. (39) and then solving the integration yields: 
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Then, the coefficient of variation will be expressed as: 
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(41) 

 
For normal distribution, the relationship between UC and lower-quarter distribution uniformity coefficient, 
DULQ, is given by the following relationship [11]: 
 

LQc DUU 63.037.0                                                            (42) 
 
Substituting the expression for UC given by Eq. (38) into Eq. (42) and rearranging for DULQ, the following 
simple transformation between DULQ and coefficient of variation of discharge (CV) can be deduced: 
 

CVDULQ 267.11                                                              (43) 
 
f) Determination of inlet pressure head 
 

Consider a lateral line with all outlets being equally spaced except for the first one, which is some 
fraction, r, of the common outlet spacing s from the inlet: 

rssin                                                                      (44) 
where sin is distance from the inlet to the first outlet and r is the ratio (0 < r <1), usually taken as 0.5 or 1 
for typical installation [2, 12]. The inlet pressure head is obtained by Eq. 22 for (x/L) =[(N-1)s+rs]/(Ns) 
=(N+r-1)/N. Therefore: 
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g) Maximum–minimum outlet pressure head 
 

Considering Eqs. (12) and (20), Eq. (18) can be written as:  
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For downhill slope, the point of minimum outlet discharge (and consequently of minimum 

pressure head) is found when the first derivative of H(x) in Eq. (46) is set to zero. Neglecting the velocity 
head, the location xmin, where minimum pressure head occurs is: 
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Because x=0 refers to the first outlet, the following equation should be used to obtain the number of outlet 
which acts with minimum pressure:  
 

   2minmin  xN                                                                      (48) 
In special cases: 
If  0min x , then 1min N   
If  Lx min , then NN min  
 

Maximum pressure head is located either in the first outlet (x=L) or at the end point (x=0). In the case 
of uphill and zero slope, the point of minimum pressure is always at the closed end of the pipeline (x=0).  
 
h) Location of the average pressure head  
 

If the location of the pressure head along the lateral is denoted by xav, then Eq. (22) should give Hav 
for x = xav . Simplifying Hav from both sides, we obtain:  
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Note that Eq. (49) is implicit and requires a trial and error or some other iterative techniques, such as 
Newton-Raphson, for solution. However, most pocket programmable calculators can easily solve it. 
Considerable simplification results if the lateral is laid on level ground (S0=0), φ is replaced by 1/FC and 
the velocity term is neglected. In this case, there is a direct solution for each value of m and N and the 
location of average pressure head is given by the following equation: 
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1                                                                    (50)  
 

Table 1 shows a comparison between values of Lxav calculated by Eq. (50) and proposed 
coefficients by Scaloppi and Allen (7) for three values of m. Note that the location of average pressure 
head is determined from the inlet for comparison. It is evident that considering the traditional form of 
friction head drop (F=1/m+1) for determining the location of average pressure head leads to a significant 
error when number of outlets along the lateral is small. As an example, when 1< N <10, for m=2, the 
relative error is 26% to 5%. However, errors decrease as total number of outlets increase since the 
traditional F and the Christiansen's F factor approach each other. 

 Conducting numerical analysis, Scaloppi and Allen [7] comprehended that their approach is 
incapable of determining the location xav when N < 6. Anyhow, this conclusion can be explained by the 
values of Table 1. The other point here is that the average pressure head is always located at the middle of 
the lateral when N=1 without depending on the kind of the flow regime. 
 
i) Pressure head variation 
 

To maintain a coefficient of uniformity of about 97%, total pressure variation in the lateral with 
outlets is typically limited to 20% [12]. This criterion can be written as shown below: 
 



A unified approach for computing pressure distribution in… 
 

August 2012                                                                                IJST, Transactions of Civil Engineering, Volume 36, Number C2      

219 

 avavH H
HH

H
H minmax


                                                   (51) 

 
Where δH is percentage of the maximum allowable difference in the outlet operating pressure head to the 
average outlet pressure head, ΔH is maximum allowable difference in the outlet operating pressure head 
along the lateral, and Hmax and Hmin are maximum and minimum values of the operating outlet pressure 
head, respectively. 

 
Table 1. Location of the average pressure head for a horizontal lateral with uniform outflow  

                  (Scaloppi and Allen 1993) and non-uniform outflow conditions (Eq. (50)) 
 

m =2 m =1.852 m =1 

Relative 
error (%) 

L
xav  

(Scaloppi 
and Allen, 

1993) 

L
xav  

(Eq. 42) 

Number 
of 

Outlets 

Relative 
error (%) 

L
xav  

(Scaloppi 
and Allen, 

1993) 

L
xav

 
(Eq. 42) 

Number 
of 

Outlets 

Relative 
error (%) L

xav  

(Scaloppi and 
Allen, 1993) 

L
xav  

(Eq. 42) 

Number 
of 

Outlets 

26.00 0.37 0.50 1 24.60 0.377 0.500 1 15.40 0.423 0.500 1 
17.70 0.37 0.45 2 16.61 0.377 0.452 2 10.06 0.423 0.470 2 
13.39 0.37 0.43 3 12.49 0.377 0.431 3 7.46 0.423 0.457 3 
10.74 0.37 0.41 4 10.00 0.377 0.419 4 5.92 0.423 0.450 4 
8.98 0.37 0.41 5 8.32 0.377 0.411 5 4.90 0.423 0.445 5 
7.71 0.37 0.40 6 7.14 0.377 0.406 6 4.19 0.423 0.442 6 
6.75 0.37 0.40 7 6.24 0.377 0.402 7 3.64 0.423 0.439 7 
6.00 0.37 0.39 8 5.54 0.377 0.399 8 3.23 0.423 0.437 8 
5.40 0.37 0.39 9 4.97 0.377 0.397 9 2.89 0.423 0.436 9 
4.91 0.37 0.39 10 4.51 0.377 0.395 10 2.62 0.423 0.434 10 
3.39 0.37 0.38 15 3.08 0.377 0.389 15 1.76 0.423 0.431 15 
2.58 0.37 0.38 20 2.33 0.377 0.386 20 1.33 0.423 0.429 20 
1.75 0.37 0.38 30 1.57 0.377 0.383 30 0.87 0.423 0.427 30 
1.33 0.37 0.38 40 1.18 0.377 0.382 40 0.63 0.423 0.426 40 
0.91 0.37 0.37 60 0.76 0.377 0.380 60 0.40 0.423 0.425 60 
0.67 0.37 0.37 80 0.55 0.377 0.379 80 0.28 0.423 0.424 80 
0.54 0.37 0.37 100 0.45 0.377 0.379 100 0.21 0.423 0.424 100 
0.11 0.37 0.37 500 0.05 0.377 0.377 500 0.00 0.423 0.423 500 
0.05 0.37 0.37 1000 0.00 0.377 0.377 1000 0.00 0.423 0.423 1000 

 
Wu [8] proposed the following uniformity parameters, given by Eq. (52), to alternate Eq. (36), which 

can be specifically used as design criteria for trickle irrigation sub-main units. The uniformity criteria δH 
and δq (emitter flow variation) along a sub-main line in trickle irrigation system is given by: 
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Where δq is emitter flow variation along the lateral line or in a sub-main unit in trickle irrigation system, 
qmax and qmin are maximum and minimum values of the emitter outflow, respectively, and Δq = qmax-qmin= 
maximum allowable difference in the emitter outflow along a sub-main line. 

Equation (52) shows that δq is essentially equivalent to δH for the laminar flow emitters (y =1). The 
criteria of hydraulic design are usually set as 10 and 20% emitter outflow variation, δq, which is equivalent 
to values of approximately 20 and 40% of δH for an emitter in turbulent flow or sprinkler irrigation system 
with y = 0.5 [8].  

The maximum difference in pressure head is obtained by Eq. (22) as: 
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     (53) 
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3. APPLICATION AND VERIFICATION 
 
An example is given here to illustrate the application of the proposed model in design of multiple outlet 
pipelines. 
 
a) Design example 
 

Determine the pressure head and outflow profiles along the pipeline for non-uniform outflow concept 
and the corresponding flow characteristics for a horizontal (S0=0) polyethylene trickle irrigation lateral 
with turbulent emitters (x=0.54), using the following data. Total number of emitters N=151, which are 
equally spaced at s =1.0 m. The inlet spacing ratio from the main pipe r =1.0. The internal diameter of the 
lateral is D =14 mm. The required average emitter discharge and corresponding nozzle pressure head are 
qav = 2.0 L h−1 (=5.555×10−7 m3 s−1) and Hav = 7.2 m, respectively. Irrigation water is at 20°C (kinematic 
viscosity υ =1.01×10−6 m2 s−1). Acceleration due to gravity g = 9.807 m s−2.  
 
b) Solution 
 

Inlet flow rate Qin=Nqav =8.389×10−5 m3 s−1; the kinetic head V2/2g=8(Nqav)2 /π2gD4 = 0.015 m; the 
inlet Reynolds number Rin=(4 Nqav /πDυ)=7,554; the distance between first and last emitters L0=150 m; 
total lateral length L=151 m. The turbulent flow (3,000 < Rin = 7,554 < 105) occurs at the inlet of trickle 
lateral. (a1 =0.316, m=1.75, n=4.75, k=7.792×10−4). So, mL

D
QkH m

m
in

f 533.530
 

. The Christiansen F 
factor for m =1.75 and N =151 is 0.3669 (Eq. (11)). Then, from Eqs. (15) and (34), we have φ=1/FC = 
2.7251 and φadj = 2.8368.  

Other calculation steps of the proposed analytical solution are summarized in Table 2. Note that Hf (L0) 
corresponds to total friction drop between the first and last outlets and can easily be calculated by putting x 
=L-s =151-1 in Eq. (12). 
 

Table 2. Calculation steps of the proposed analytical method for Design Example 
 

SBS  Calculated 
By 

Proposed analytical method Design 
parameter φadj=2.8368 φ=2.7251 

8.86 Eq. (45) 8.69 8.68 Hin (m) 
8.86 - 8.65 8.64 Hmax (m) 
6.79 - 6.68 6.66 Hmin (m) 
21.9 Eq. (52) 22.85 22.91 δH (%) 
1.93 Eq. (12) 2.03 1.99 Hf (L0) (m) 
12.5 Eq. (52) 13.1 13.1 δq (%) 
4.1 Eq. (41) 4.3 4.4 CV (%) 
96.7 Eq. (42) 96.5 96.5 UC (%) 
94.8 Eq. (43) 94.5 94.5 DULQ (%) 

 
It is observed that solving the example with the proposed method yields to an accurate estimation of 

hydraulic design parameters. Solving the example with the traditional φ (φ=1/FC) also gives acceptable 
results, even though its accuracy is not permanent since it is independent of the slope, the average pressure 
head along the lateral and the kind of the emitters.  

In order to show validity of the new approach, the variation of pressure head, outlets discharge, 
outflow along the lateral and also the Reynolds number are plotted against the relative length (x/L) in Fig. 
3. It can be deducted that all profiles follow the SBS method accurately. However, in order to do a detailed 
comparative analysis, the solution of the Design Example is extended to cover various combinations of 
design parameters, varying emitter discharge exponents (x = 0.2, 0.5, 0.54, and 1.0) and different uniform 
pipeline slopes (S0= 0.0, −0.02, −0.05, 0.02, and 0.05). The complete results are presented in Table 3. As 
shown in Table 3, for all design cases the results obtained from the analytical solution and those of the 
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SBS numerical method are in good correlation. For example, Table 3 shows that for S=0.02 and y=0.2, the 
pressure head at the inlet (Hin), pressure head at the first and the last outlets (Hmax , Hmin) and pressure head 
at the end of the lateral (Hd) are 7.17, 8.17, 6.82 and 8.17 m, whereas the SBS method yielded 7.14, 8.12, 
6.75 and 8.12 m respectively. 

 

              
Fig. 3. Pressure head profile for Design Example with respect to the distance ratio from lateral end for 

 downhill and uphill conditions ( 02.0 and 05.0 ), emitter discharge exponent y =0.54,  
obtained from the presented analytical solution and the numerical SBS solution 

 
Table 3. Comparison of hydraulic design parameters based on the proposed analytical method and the  

    numerical step-by-step (SBS) method  (Hathoot et al., 1993) for various combinations  
of uniform slopes and different emitter parameters 

 
Slope
(S0) 

   Proposed analytical method     Numerical SBS method 

y Hin Hmax Hmin H1 Nmin )( 0LfH  δq CV UC Hin Hmax Hmin H1 Nmin )( 0LfH  δq CV UC 

0.00 0.2 8.68 8.65 6.67 6.67 1 2.03 5.1 1.6 98.7 8.86 8.86 6.91 6.91 1 1.97 4.80 1.5 98.8 
 0.5 8.69 8.65 6.67 6.67 1 2.03 12.2 4.0 96.8 8.7 6.7 6.78 6.78 1 1.94 11.7 3.9 96.9 
 0.54 8.69 8.65 6.68 6.68 1 2.03 13.1 4.3 96.5 8.7 8.7 6.79 6.79 1 1.93 12.5 4.1 96.7 
 1 8.70 8.66 6.69 6.69 1 2.03 22.8 8.0 93.6 8.57 8.57 6.69 6.69 1 1.89 21.9 7.9 93.7 

0.02 0.2 7.17 8.17 6.82 8.17 108 2.03 3.6 1.1 99.1 7.14 8.12 6.75 8.12 108 2.04 3.60 1.1 99.1 
 0.5 7.16 8.17 6.83 8.15 108 2.03 8.5 2.7 97.9 7.26 8.10 6.93 8.10 109 2.17 7.50 2.9 97.7 
 0.54 7.16 8.17 6.82 8.17 108 2.03 9.3 2.9 97.6 7.25 8.23 6.87 8.23 109 2.03 9.00 2.9 97.7 
 1 7.15 8.16 6.83 8.16 108 2.03 16.3 5.4 95.7 7.24 8.04 6.87 8.04 108 2.22 14.5 5.7 95.4 

0.05 0.2 4.89 10.43 4.91 10.43 151 2.03 14.0 4.6 96.3 5.17 10.66 5.17 10.66 151 2.03 13.5 5.0 96.0 
 0.5 4.87 10.40 4.89 10.40 151 2.03 31.5 11.4 90.9 5.11 10.37 5.11 10.37 151 2.25 29.8 12.9 89.7 
 0.54 4.87 10.40 4.88 10.40 151 2.03 33.5 12.3 90.2 5.10 10.37 5.10 10.37 151 2.23 31.8 12.9 89.7 
 1 4.83 10.36 4.85 10.36 151 2.02 53.2 22.6 82.0 5.02 10.54 5.02 10.54 151 1.99 52.4 23.8 81.0 

-0.02 0.2 10.20 10.14 5.17 5.17 1 2.03 12.6 4.0 96.8 10.44 10.44 5.56 5.56 1 1.90 11.8 4.0 96.8 
 0.5 10.22 10.16 5.18 5.18 1 2.03 28.6 9.8 92.2 10.21 10.21 5.39 5.39 1 1.83 27.3 10.0 92.0 
 0.54 10.22 10.16 5.19 5.19 1 2.03 30.5 10.6 91.5 10.15 10.15 5.35 5.35 1 1.82 29.2 10.8 91.4 
 1 10.25 10.18 5.21 5.21 1 2.03 48.8 19.5 84.4 10.62 10.62 5.33 5.33 1 2.31 49.8 19.7 84.3 

-0.05 0.2 12.48 12.39 2.92 2.92 1 2.03 25.1 7.5 94.0 12.89 12.89 3.44 3.44 1 1.97 23.2 7.9 93.7 
 0.5 12.52 12.42 2.95 2.95 1 2.03 51.3 18.7 85.0 12.51 12.51 3.36 3.36 1 1.66 48.2 19.7 84.3 
 0.54 12.52 12.43 2.96 2.96 1 2.03 54.0 20.2 83.9 12.40 12.40 3.26 3.26 1 1.66 51.4 21.2 83.1 
 1 12.57 12.47 3.00 3.00 1 2.03 75.9 37.1 70.4 12.94 12.94 3.08 3.08 1 2.38 76.2 38.1 69.6 

 
For the friction head loss between the first and last emitters, Hf(L0), the proposed method gave 2.03, 

whereas the SBS method yielded 2.04 m. 
Position of the outlet which possesses minimum pressure head, Nmin, in Table 3 is calculated from 

Eqs. (47) and (48), respectively. As an example, for S0=0.02 and y=0.54, φadj is 2.692. Therefore using Eq. 
(47): 
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Then from Eq. (48) we have 
 

  1082354.106min N   
Finally, Table 3 illustrates that parameters δq, CV and UC are in excellent accordance with the SBS 

method in all cases. 
The pressure head distribution for 02.00 S and 05.00 S  (calculated from Eq. 22) is plotted 

against the SBS method in Fig. 3 to prove the validity of the model. This figure shows that the proposed 
method is accurate enough for different slopes of the lateral pipeline.  
 

4. CONCLUSION 
 
A new linear relationship describing the total flow rate variation along laterals (in sprinkler or trickle 
irrigation systems) is proposed. Simple analytical equations describing friction head loss and velocity head 
variation along laterals in which the number of outlets and the flow regime are taken into account are also 
developed. The various parameters characterizing the outflow profile along the lateral are calculated by 
simple analytical expressions and compared with the accurate SBS method. The comparison showed that 
the proposed method is sufficiently accurate in practical applications.  
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