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Abstract– Floods are one of the most important natural disasters causing extensive loss of life and 
properties every year all over the world. Occasional tropical or Mansoon rain can produce floods 
that are sometimes considered as a lifesaver due to water scarcity in arid and semi -arid regions. By 
simulating the hydrograph of probable floods in each year, action plans can be implemented to 
reduce damages and also to better plan for utilizing water resources potential of floods. By 
simulating future rainfall, and estimating the resulted runoff, it can be determined whether a severe 
flood will occur or not. The simulated flood hydrograph is affected by uncertainties in future 
rainfall simulation and runoff modeling that should be considered when flood prevention plans are 
developed. In this study, a long lead flood simulation model is developed, considering the 
uncertainties in the simulation process. The SDSM (Statistical Downscaling Model) is used to 
generate hourly and daily rainfall data, needed for flood simulation, based on General Circulation 
Models (GCM) outputs. The extreme simulated rainfalls in each year are considered as the 
probable flood and a rainfall-runoff model developed in HEC-HMS software environment is used 
for simulation of the corresponding hydrograph. The uncertainties in hydrograph development are 
considered through variation of curve number (CN) and time of concentration (Tc). The effect of 
climate change on flooding probability is evaluated by comparing the Cumulative Distribution 
Function (CDF) of the simulated floods with historical floods. The proposed model for long lead 
flood simulation has been applied to the Kajoo basin located in the south-eastern part of Iran.            

 
Keywords– Uncertainty, long lead flood simulation, downscaling, rainfall-runoff model  
 

1. INTRODUCTION 
 

Long lead flood simulation is an effective tool in flood damage prevention/reduction using optimization 
schemes as Karamouz et al. [1]. Long lead flood simulation process is affected by many parameters with 
considerable uncertainties. Global climate change will have a significant impact on the mid to long-term 
planning for prevention of flood damages by simulating their special characteristics such as flood 
frequencies and magnitudes in local and regional hydrologic systems. In addition to water resource 
planners who are required to include the likely impacts of climate change on current water policies and 
capital investment plans, especially in the flood fields, do so against a background of considerable 
uncertainty [2]. Many of these uncertainties arise from the stochastic nature of global climate as a physical 
system. The uncertainties in runoff simulation, especially floods, are mainly due to 2 types of 
uncertainties. The first is future rainfall simulation uncertainty and the 2nd is uncertainty due to rainfall-
runoff model parameters. An important step in looking for causes of flood is to understand the source of 
uncertainty related to performance assessment of drainage systems. Hansen et al. [3] introduced a 
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methodology for design and analysis of urban drainage systems that takes into account the uncertainties 
related to the model inputs and parameters. For less complex situations, the first order analysis of 
uncertainty is used, while the Monte Carlo method is also used for more elaborate situations. In both 
cases, the uncertainty analysis leads to reliability based design of urban drainage systems, which can be 
setup for any desired confidence level. Jiang et al. [4] investigated potential impacts of human-induced 
climate change on the water availability in the Dongjiang basin, South China, using six monthly water 
balance models. The capability of the six models in simulating the present climate water balance 
components is first evaluated, and the results of the models in simulating the impact of the supposed 
climate change are then analyzed and compared. The results of the analysis reveal that all six conceptual 
models have similar capabilities in reproducing historical water balance components. Greater differences 
in the model results occur when the models are used to simulate the hydrological impact of the proposed 
climate changes. The study provides insights into the considered changes in the basin's hydrology due to 
climate change, that is, it shows that there can be significant implications for the investigation of response 
strategies for water supply and flood control scenarios due to climate change. Burger et al. [5] presented 
kernel-based learning machine river flow models for the Upper Gallego catchment of the Ebro basin. The 
models posed two major challenges: (1) estimation of the rainfall-runoff transfer function from the 
available time series is complicated by anthropogenic regulation and mountainous terrain and (2) the river 
flow model is weak when only climate data are used, but additional antecedent flow data seemed to lead to 
delayed peak flow estimation. These types of models, together with the presented downscaled climate 
scenarios, can be used for climate change impact assessment. Krysanova et al. [6] studied the implications 
of complexity and uncertainty in climate change impact assessment at the river basin and regional scales. 
The study was performed using the process-based ecohydrological spatially semi distributed model SWIM 
(Soil and Water Integrated Model). The model integrates hydrological processes, vegetation/crop growth, 
erosion and nutrient dynamics in river basins. It was developed from the SWAT and MATSALU models 
for climate and land use change impact assessment. The study area is the German part of the Elbe River 
basin (about 100,000 km2). The uncertainty of climate impacts was evaluated using comprehensive Monte 
Carlo simulation experiments. Day [7] utilized the ESP (Ensemble Stream flow Prediction) model for 
runoff prediction. In their approach, a hydrological model using current in stream flow, rain and 
temperature time series is developed which calculates the probable flow hydrographs. Then a statistical 
model that determines the statistical distribution of rainfall in future time periods is implemented. Ingram 
et al. [8] investigated an advanced method for hydrological prediction in real time. The most important 
characteristic of their system was the real time prediction by using the meteorological predictions. Azmi et 
al. [9] used five different models of data fusion for streamflow forecasting. The results show the capability 
of the combined models in streamflow forecasting.   

Harpham and Wilby [10] simulated the precipitation for different parts of England using various 
models such as SDSM, radial neural network and multi layers neural network. The results of their 
investigation show that all of these methods are capable of simulating precipitation; however, in different 
zones their capabilities are different. Ekstorm et al. [11] assessed the effects of selecting the probability 
distributions of rainfall and temperature variables on the runoff distribution. The results show that 
different probability functions for rainfall and temperature can affect the flow distribution function. In this 
paper, a methodology for long-lead flood simulation has been developed using downscaled rainfall data. 
Sensitivity analysis has been done on the results by considering uncertainties in downscaling procedure 
and parameters estimation of the rainfall- runoff model. This section is followed by an introduction to the 
study area characteristics and the data resources. Then the future rainfall simulation and downscaling 
procedure is described. In the following section a description of a rainfall- runoff model and its calibration 
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is given. In the results section, uncertainty analysis of the future rainfall and flood simulation and the 
rainfall- runoff model parameters as well as future trends of flood are presented. Finally, a summary and 
conclusion are given. 
 

2. STUDY AREA 
 
The study area is the Zirdan dam sub basin at the Kajoo River basin with an area of 3659 km2, in the South 
Baloochestan region located in the south-eastern part of Iran. Because of the limited flood carrying 
capacity of the Kajoo River, yearly floods cause damages to the agricultural lands and the rural areas. 
Therefore, future flood simulation in this area is vital for development of warning schemes and 
contingency plans for flood damage prevention. The study area includes 12 sub-basins identified based on 
physiographic studies; the physical characteristics and the placement of each of these sub-basins are 
presented in Table 1 and Fig. 1, respectively. In the past fifteen years, six considerable floods have 
occurred in the years of 1991,1992,1995,1997 and 2005 in this region. These floods left behind extensive 
damages that show the vulnerability of the study area to floods and the significance of future flood 
simulation with adequate lead time. The rainfall data at the Ghasre-Ghand station, which is the only 
available meteorological station inside the Zirdan dam sub-basin, is used for developing rainfall 
simulations and downscaling model. Twenty four years (1976–1999) of daily rainfall data has been used 
in this station which is used as predictands. Based on WMO recommendations the basic normal window 
for climate models results calibration and verification is considered to be 30 years, however in this study 
only 24 years of data is available and used for models development. This could be a shortcoming in 
climatic studies and has to be extended once additional data is obtained/collected. 

 
Table 1. The characteristics of sub-basins in the study area 

 

Sub-
basin  

A  
(km2) 

L 
(km) 

TC(mean)  
(hr) 

TC 
(Bransby& 
Williams)  

TC 
(Kirpich) 

1  535 28  5.46 7.43 3.48 
2 175 10  1.66 2.3  1.01 
3 422 21  3.76 5.17 2.34 
4  66 13  2.66 3.75 1.56 
5  317 38  2.39 3.29 1.49 
6 450 39  7.21 10.16 4.26 
7 395 39 8.28 11.43 5.12 
8 506 32  5.73 8.01 3.46 
9 50  13  2.82 4.04 1.61 
10 73.3 13  2.83 3.91 1.75  
11 255 25  5.13 7.08 3.18 
12  295 18 3.17 4.44 1.9 

 
The historical rainfall data shows that devastating floods occur in the winter (January to March). 

Furthermore, the only measured flood hydrograph that is officially released and used for calibration has 
occurred in winter. Therefore, to develop the methodology and test it, winter rainfalls/floods are 
considered. Observed large-scale NCEP (National Centre for Environmental Prediction) reanalysis 
atmospheric variables for the same period (for 60-63.75E, 25-27.5N) have been used as predictors. Also, 
hydrographs of observed historical floods at the Ghasre-Ghand station during the study period have been 
gathered for rainfall-runoff model calibration. 
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3. RAINFALL DOWNSCALING 

 
The downscaling model used in this study is a multiple regression based model and is referred to as 
Statistical Down-Scaling Model (SDSM). The analytical base of this model is formulated by Wilby et al. 
[10]. In downscaling with the SDSM, a multiple linear regression model is developed among few selected 
large-scale predictors and the local scale predictands such as rainfall. The model has been organized in 
two steps for rainfall downscaling. In the first step, it is determined each day whether rainfall occurs or 
not, as follows:  


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0 ˆ                                                              (1) 

Fig. 1. The study area of Kajoo River basin 
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where i  is the conditional probability of rainfall occurrence on day i, )(ˆ j
i

u  is the normalized amount of 
predictor j on day i and j  is the estimated regression coefficient. Rainfall in day i occurs if ii r , 
where ir  is a stochastic output from a linear random- number generator. Value of rainfall in each rainy day 
is estimated in the second step using Z score as follows:  

  
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ii yFZ                                                                       (3) 
 
where iZ is the z-score calculated by the estimated regression equation with coefficient j  for predictor j, 
and the normally distributed stochastic error term  . Then the rainfall value, iy , in Equation 3 is 
calculated from the cumulative distribution function   of the empirical distribution function )( iyF  of the 
daily rainfall occurrence. It must be noted that the same predictors in the standardized form are used to 
model rainfall occurrence and depth. The correlations between different combinations of available 
climatic predictors and daily rainfall data have been calculated to find the most appropriate predictors of 
rainfall in the study area. It must be noted that only the winter (January, February, and March) rainfall has 
been considered for this purpose because it constitutes about 75% of the annual rainfall and all major 
floods occur in these months. A combination of predictors has been selected for long lead rainfall 
simulation because of their maximum correlation with daily rainfall. Correlation coefficients between 
selected predictors and daily rainfall have been presented in Table 2. This table also reports the P-value 
between the predictors and rainfall that help to identify the amount of explanatory power for each 
predictor. P-value is a statistical parameter that measures the probability of accidental high correlation 
between predictands and predictors numerically. If P-value is small, the correlation is more realistic. As 
the distribution of daily rainfall is skewed, a fourth root transformation is applied to the original series to 
convert it into a normal distribution, and then it is used in regression analysis; Fig. 2 shows this 
transformation. The model is structured in monthly time scale for rainfall downscaling, in which twelve 
regression equations are derived for twelve months. The model is calibrated and validated using 15 years 
(1976–1990) and 9 years (1991–1999) of daily data of observed predictors and predictands respectively, 
and one hundred ensembles of downscaled daily rainfall have been generated. Table 3 also shows the 
errors of maximum and mean downscaled rainfall data. Through the above procedure, the weather 
generator is used to downscale observed (NCEP) predictors, and generate scenarios to downscale the 
considered scenarios for future climate variation. HadCM3 (Second Hadley Centre Coupled Ocean-
Atmosphere GCM) scenario A2 and B2 data which is available from year 2000 to 2099, is used as a model 
input signal and one hundred ensembles of downscaled daily rainfall have been generated. In these 
scenarios, green house gas emissions and economic and social development effects on the future climate 
are considered. The A2 scenario describes a completely different condition of the world. The underlying 
theme is self reliance and preservation of local identities and the population will grow continuously. 
However, in this scenario per capita economic growth and technological change are slower than other 
scenarios. In the B2 scenario emphasis is on local solutions to achieve economic, social and environmental 
sustainability. To ensure the appropriate performance of the downscaling model, regarding the 
characteristics of the observed data, nonparametric methods are employed to test the equality of mean and 
variance of the downscaled and observed data. The details of these methods applications are discussed in 
the following sections.  
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 Wilcoxon signed rank test  
For constructing a hypothesis test p-value for equality of means of observed and downscaled data 
(difference of two population means), the Wilcoxon signed rank method is used [11]. This is also true 
about the downscaling procedure followed in this study. A detailed description of the theory of Wilcoxon 
signed rank test can be found in Conover [12] and Neter et al. [13]. When it can be assumed that the 
population of differences is symmetrical, the Wilcoxon signed rank test is generally more powerful than 
the sign test for making inferences about the population median differences ( D ). In practice and 
especially in experimental settings, the population of differences between matched pairs will frequently be 
symmetrical, or approximately so. Given the approximate normality of sum the signed ranks and denote 
the sum (T), the construction of the decision rule proceeds as usual for large- sample tests. When the 
alternatives are: 
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the appropriate decision rule to control the   risk in application of the test is calculated as follows: 
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where z(j) is the 100(j) percentile of the standard normal distribution and n is the sample size. MATLAB 
7.0 software is used to perform this test. The results of this test application are given in Table 4. As can be 
seen, the results are all meaningful in 95% confidence level. 

 
Table 2. The Results of selected predictors for rainfall prediction in the study area 

 

Predictor Correlation coefficient between 
weather –variables and rainfall Pv (P value) Pr (Partial 

correlation) 
relative humidity at 850 hPa altitude 0.42 0.002 0.48 

Near surface specific humidity 0.45 0.000 0.5 
Near Surface relative humidity 0.40 0.000 0.44 

 

 
Fig. 2. Fourth root transformation to the original rainfall series 
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Table 3. The errors between simulated and observed rainfall for (1991-1999) 
 

 
 

 
 
 

 
Table 4. The results of performing Wilcoxon rank sum tests for evaluation of simulated of rainfall  

 
 
 
 

 Modified Levene’s test 
Modified Levene’s test suggested by Brown and Forsythe [14] is used in this study to test the equality of 
variance of downscaled and observed data. Levene’s test is used when the data come from continuous, but 
not necessarily normal, distributions. In this method the distances of the observations from their sample 
median are calculated. The Levene test is defined as:  
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Given a variable Y with sample of size N divided into k subgroups, where Ni is the sample size of the ith 
subgroup and i  denotes the standard deviation of the i subgroup. The Levene test statistic is defined as:  
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and 

0iijij YYZ             (8) 
 
where Yij is the value of the jth sample from the ith group, 0iY  is the mean of all Zij , 00Z is the mean of all 
Zij and 0iZ  is the mean of the Zij for group i, and are calculated as follows: 
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MINITAB 13.0 is used for performing Levene’s test.The results of the test application are given in Table 
4. The results of this test are the same as the Wilcoxon text. In the next step, 100 ensemble data of rainfall 
have been generated for uncertainty analysis. The results show that there is no meaningful difference 
between these climate change scenarios, which is why the results of scenario Had A2 are considered in the 
proceedings of this paper. It should be noted that different GCM models define various climate change 
scenarios whose analysis could be useful for evaluation of uncertainties. However the data of other models 
cannot be accessed, and the studies show that scenarios developed by HadCM3 could considerably cover 
possible future climate changes. In this paper monthly maximum rainfall that have high potential for flood 

Maximum Mean  MAE 
5 2.8 Simulated rainfall by (H3A2a) scenario (mm) 
  RMSE 

 7  2.8 Simulated rainfall by (H3A2a) scenario (mm) 

Parameter GCM Model (Variance) (Mean) 
Leven’s test Wilcoxon rank sum test 

p-value Test Statistic p-value 
Rainfall NCEP 0. 995 0.0001 0.977 

HAD (A) 0.827 0.049 0.665 
HAD (B) 0.963 0.002 0.5636 
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are considered. Therefore, the simulated and observed mean maximum rainfall in each month during the 
validation period is compared as shown in Fig. 3. This figure shows the capability of the rainfall 
simulation model for configuration of monthly maximum rainfall variations. There are some deviations in 
the observed data, especially in the months of April and June which are not important in this study, 
because only the winter rainfall has been considered for simulation. For flood simulation, first the rainfalls 
that cause flood must be identified. For this purpose, the maximum simulated rainfall in each ensemble 
has been used as rainfall that causes flood. The selected rainfall is imported to rainfall-runoff model for 
flood simulation. For investigation of compatibility of the simulated and observed rainfall, the CDFs of 
maximum winter rainfalls are developed for both time series (Fig. 4). The developed CDFs for periods of 
1991-99 are compared and the results show the consistency of the downscaling procedure. The 
probabilities of exceedance of simulated and observed rainfall events are closely matched. This is true 
with flood events as well. It can be concluded that the flood return periods are magnitudes, which are also 
preserved. 
 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 3. observed and simulated data at the validation period (1991–1999) (in mm) 
 

 
Fig. 4. Simulated and observed probability distribution of rainfall for 1991-1999 
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4. RAINFALL-RUNOFF MODEL 
 
Karamouz [15] developed a rainfall-runoff model by using HEC-HMS software and the soil conversation 
service (SCS) method has been used for runoff estimation. The available rainfall data of flood 1991 are 
converted to the hourly hyetograph that is needed for rainfall-runoff model calibration. This has been done 
using the central pattern of SCS hyetograph. This pattern has monotonic and steady intensity during the 
rain, the same as the observed rainfall pattern in the study area. An average CN of 85 for moderate 
humidity antecedent moisture condition (AMC-II) has been estimated for the basin; see also Karamouz et 
al. [16]. The calibrated rainfall-runoff model performance in simulating the other floods (occurred in years 
90, 91, 96, 98 and 2005) in the study area is also checked. Since the model has well simulated the 
considered floods it has been employed for further analysis in the study area. The simulated hyetograph 
for rainfall that caused the February 1991 flood has been used in the HEC- HMS model for model 
calibration. As a theoretical pattern of rainfall has been used for developing hourly rainfall hydrographs, 
due to lack of data, only the peak values are compared with the observed floods. There is a difference of 
4% between the observed and simulated peak of flood 1991. For other historical floods (1991, 1992, 1995, 
1997 and 2005), the same procedure is followed and the peak floods are estimated. The calculated errors 
are less than 10% in all cases. 
 

5. UNCERTAINTY ANALYSIS 
 
In all fields of natural resources management, decision makers face considerable uncertainties and there 
are a lot of unknown complexities of natural phenomena. Engineers and system analysts make certain 
assumptions in modeling to develop uncertain outputs. The two main uncertainty sources are the 
parameter estimation uncertainties in the simulation model and the intrinsic uncertainty in the input data 
(natural variability of the streamflow). A probabilistic approach is usually used for dealing with 
uncertainties, especially in the long lead simulation tasks. Through this approach, decision makers will be 
able to determine the simulated value with desired probability of occurrence or acceptable risk in 
exceeding different thresholds. 

In this paper, uncertainties of long lead flood simulation in each year are analyzed in two approaches: 
first, uncertainty analysis of the results of rainfall simulations that are used for future flood simulation and 
the second, evaluation of uncertainty in simulated floods by a rainfall-runoff model. 
 
Approach-1:  
As mentioned before, in future rainfall simulation and downscaling procedure, a set of 100 ensembles of 
daily data are generated. This daily data is transformed to the power of four to match the original data. The 
maximum rainfall in the winter of the specified years is obtained from each ensemble. Then, a cumulative 
probability function is fitted to the 100 maximum selected rainfall from different ensembles in each year 
for uncertainty analysis. The goodness of this fitted function can be evaluated by the probability of 
occurrence of the observed rainfall. For a close to symmetrical distribution, the expected value of a 
distribution falls close to the 50% probability of occurrence (The highest point of Probability Density 
Function (PDF). Therefore once a PDF is estimated based on the ensemble data, the observed value and 
the 50% simulated event should be compared. The results of probability function fitted to the selected 
maximum values based on the Anderson (AD) and Chi- square ( 2 ) goodness of fit test are presented in 
Table 5. According to this table, the lognormal distribution has the minimum AD and 2  test value; 
therefore, it is determined as the probabilistic distribution for the selected maximum rainfall data at the 
Ghasre-Ghand station (R3 in Fig.1). In Fig. 5, the probability distribution of simulated rainfall and the 
amount of observed rainfall in February of 1991 have been shown as an example. This figure shows that 
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the observed rainfall of 25mm for this period falls in about 38% probability of occurrence marks. The 
expected value of simulated rainfall (50% probability of occurrence) is about 22mm. The expected value 
of other rainfall probability distributions is also in close proximity of the observed values. This could be 
an effective tool to test the suitability of the assumed CDF and then used for uncertain simulation.  
 

Table 5. The results of fitting probability functions to rainfall data with 95% significance level 
 

Exponential  Extreme value Weibull Lognormal  Normal         Probability distribution 
 

Statistical test 
0.32  -----  ----- 0.056 0.12 2 
14.7 7.3 1.63 0.43 2.6 AD  

 
Approach-2: 
In this approach, a cumulative distribution function has been fitted to the simulated flood peaks utilizing 
the 100 ensemble rainfall data through a rainfall-runoff model. The best fitted CDF for simulated flood is 
lognormal. As an example, the CDF of the simulated floods in the winter of 1991 has been shown in Fig. 
6. Here, we tried the same method used in the case of rainfall. As can be seen, by comparing Figs. 5 and 6, 
the observed flood is closer to the expected flood value which is in about the 0.43 mark. If the 50% mark 
has the highest density of occurrence (PDF) and a good simulation probability, distribution should tend 
towards an expected value close to the observed event, then the flood CDF is more representative of the 
observed value than the rainfall CDF. For evaluating the effect of the 2nd moment (variance), one could 
conclude that based on the first moment (expected value) of flood, the CDF could be the simulation of the 
observed flood estimation with higher accuracy. The probability of occurrence of floods or rainfall in a 
desired interval around the mean value can be estimated by the Chebyshev equation which states that [17]:  
 

2

11)]()[(
h

hmXhmP xxxx       (11) 
 
where xm and x  are the mean and the standard division of the fitted empirical probability function of 
variable X. h is a coefficient which determines the range of simulated values with a probability of 
occurrence of more than the right side of inequality. As the amount of x  increases, the range of x with 
desired probability increases, so the simulations are less certain. This can be quantified using the 
coefficient of variation (CV). The average CVs of simulated flood and rainfall distribution are 82 and 50 
percent, respectively, which show more certainty in future rainfall simulation compared to flood 
simulation. This is due to the coupled impact of uncertainty of rainfall and parameter estimation 
uncertainty that contribute to long lead flood simulation. In the second approach for uncertainty analysis, 
the effects of uncertainty in the rainfall- runoff model parameters estimation are evaluated. The two 
important parameters considered are the time of concentration (tc) and the value of Curve Number (CN), 
which greatly affect the resulted flood hydrograph. For this purpose, different estimations of basin's tc that 
are obtained from different empirical functions (Bransby & Williams and Kirpich) are compared with the 
mean value of tc. The empirical methods for calculating tc are as follows: 
1- Kirpich's method:  

385.0
3

)(949.0
H
Ltc          (12) 

 
where tc is the time of concentration (hr) and L and H are the basin length (km) and the difference between 
the highest and lowest points of basin (m), respectively. 
2- Bransby-Williams method:  
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1.02.0

2.196.0
AH
Ltc                                              (13) 

 
where A is the area of watershed (km2) and L and H are as before. These equations are selected based on the 
results of a study by Karamouz [18] on the physiographic analysis of the case study. The mean of tc from the 
two methods was also considered. Also, CN variations due to soil class and moisture conditions have been 
considered. CN for AMC-ΙΙΙ and AMC-Ι soil condition has been estimated as 97 and 70, respectively. The 
results of using the probability distribution of flood estimation for different rainfall-runoff model parameters 
are shown in Fig. 7. The probabilities of flood simulations are less affected by the time of concentration. 
Comparing graphs 2, 3, 4 with the same CN in Fig. 7 shows a relatively small shift in CDF with the mean tc 
falling in-between as expected. For the same tc, graphs 1 and 3, the variation in CN results in a considerable 
shift in CDF. So the model is more sensitive towards this parameter. Therefore graph 3 with mean tc and CN 
of 85 is more representative, providing an expected value (50% CDF) close to the observed flood. This is the 
same as the CDF used in Fig. 6. As shown, the values of CN = 70 (for dry soil conditions) and CN=97 (for 
dry soil conditions) with the mean value of tc, yield to the minimum and maximum future flood simulations, 
respectively. Figure 7 shows that the shape of probability distribution of runoff simulation depends on the 
variations of CN and tc. When CN moves towards higher moisture conditions, the simulated values are more 
scattered. This difference is more noticeable when probability of occurrence floods around 50%. Sensitivity 
analyses of flood simulations for different probabilities and parameters, shown in Table 6, are performed. 
For example, using a CN equal to 70 for wet soil conditions and tc as the empirically estimated value, the 
peak of flood with the probability of occurrence of less than 40% is simulated as 490 m3/s. Each of these 
simulations can be used by the decision makers for developing flood protection programs when they 
consider the trade-off between flood damages and flood protection costs. The natural variability of rainfall 
data has been considered through development of 100 ensembles of rainfall data in each year. Furthermore, 
the uncertainty in the rainfall-runoff model has been considered by different CNs, and time of concentration 
values and evaluation of their effects on the resulting runoff.  
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Fig. 5. Simulated probability distribution of rainfall and corresponding value of February 1991 

 
Table 6. Sensitivity analyses of flood predictions to rainfall-runoff models parameters 

 
Case 
No. CN method of estimation of tc 

Peak of flood (m3/s) (probability of exceeding)  
20% 40% 50% 60% 80% 

1 70 mean value of tc 795 490 400 323 200 
2 85 Bransby&Williamse 1218 786 653 536 342 
3 85 mean value of tc 1515 974 810 664 423 
4 85 Kiripich 2051 1293 1072 900 560 
5 97 mean value of tc 3109 2230 1952 1625 1195 
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Fig. 6. Simulated probability distribution of flood and corresponding value of February 1991  

 
 
 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Risk of flood simulations for year 1991 

 
6. LONG LEAD TRENDS OF FLOOD SIMULATION 

 
For considering the effects of future climate change on the probability of exceedance of flood events, the 
CDF of simulated rainfall and flood values in periods of 1976-1999, 2000-2020 and 2020-2040 are 
developed (Figs. 8 and 9). The corresponding probability of exceedances of historical rainfalls and floods in 
CDF of different periods are compared to evaluate the effect of climate change on hydrological events. The 
derived simulated rainfall CDF shows that for the low-end rainfall values the probability of exceedances is 
increasing, but for higher rainfall values the probability of exceedances is decreasing. This is also true for 
flood events as well. It can be concluded that the severity of the rainfall and flood events in the study region 
is decreasing under climate change effects.  
 

7. SUMMARY AND CONCLUSION 
 
In this paper, the daily rainfall simulation in the Kajoo river basin located in the South Baloochestan 
region in Iran, was done using a statistical downscaling model, SDSM. A rainfall-runoff model has been 
developed to convert the simulated rainfall to runoff in the study area. The rainfall and flood of February 
1991 has been used for model calibration. By analyzing the downscaled rainfall data in each year, the 
rainfall that causes the floods has been characterized and used in the rainfall-runoff model to simulate the 
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maximum probable peak of flood. The results show that the simulation hydrograph closely matches the 
observed hydrograph. Uncertainties in future flood simulation have also been studied by two different 
approaches. In the first approach uncertainties in rainfall simulation have been considered by developing 
100 ensembles of data for rainfall and fitting a probability distribution to rainfall. A probability of 
exceedance could then be selected (i.e. 50%) based on the risk taking attitude of the decision maker and 
the associated flood could be estimated. The second approach in the analyses of uncertainty in future flood 
simulation is to evaluate the effects of uncertainty of rainfall-runoff model parameters. For this purpose 
different values for tc and CN have been estimated and the probability distribution of flood simulations are 
developed. The results show that the simulation scheme is more sensitive to CN compared to the time of 
concentration, tc. The frequencies of severe flood are decreasing under climate change effects. The results 
of this study show the significant value of developing tools for contributing uncertainties in long lead 
flood simulation.   

Fig. 8. Simulated probability distribution of rainfall for 1976-1999, 2000-2020 and 2020-2040 
 

Fig. 9. Simulated probability distribution of flood (maximum runoff) for  
1976-1999, 2000-2020 and 2020-40 

 
Acknowledgments: This study was a part of a flood management project entitled "Flood plane zoning 
downstream of Kajoo and Kariani river basins and the design of a flood warning system" sponsored by the 
Sistan and Baloochestan Water Authority. 
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