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Abstract— Water Distribution Networks (WDNs) are an essential infrastructure of every
civilization. In the past decades, there has been a lot of work on the optimization of WDNs. This
paper presents a hybrid NSGA-II for multi-objective optimization of combinatorial WDN design,
utilizing the SOM network as a tool to find the genotypic or phenotypic similarities. SOM is a
versatile unsupervised Artificial Neural Network (ANN) that can be used to extract the similarities
and find the related vectors with the use of a proper similarity measure. The proposed method,
SOM-NSGA-II, derives subpopulations or virtual islands for inbreeding similar individuals to
speed up the convergence process of the optimization. The cross-over operation between similar
individuals of the subpopulations at the constraint dominated region of the solution space showed
a faster convergence and a wider Pareto front for the test problems considered. An added
advantage of the method is the application of genotypic sorting of the population by SOM for
visual representation of the structure of the Pareto front. The resulted maps showed the extent of
variation of the decision variables and their relative importance. This method may be utilized to
speed up optimization of large scale WDNs and as an important visual aid for decision makers and
designers of WDNSs.
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1. INTRODUCTION

Water Distribution Networks (WDNS5) are an essential infrastructure of every civilization. There have been
numerous efforts in the past few decades to minimize costs associated with the operation and construction
of WDNSs, leading to many single objective optimization algorithms [1]. The most widely used algorithms
have been linear programming [2], enumeration techniques [3], nonlinear programming [4], genetic
algorithm [5], simulated annealing [6], shuffled frog leaping algorithm [7], and ant colony optimization
algorithms [8-11]. The method used by these approaches is to transform the constraints and objectives into
one objective by aggregating them with penalty factors. A drawback of this single objective optimization
is that the choice of penalty factors may affect the resulting optimal solution [12].

Recent researches deal with WDN optimization as a multi objective optimization, owing to
consideration of other objectives such as reliability, quality of service, and head deficit [13]. From a more
realistic point of view, multi-objective optimization methods provide the tradeoffs between objectives of
interest [14]. For example, benefit and quality of a WDN design were considered as a multi-objective
optimization using a fuzzy approach [15]. Minimization of cost and maximization of a surrogate measure
of reliability were considered in a Non-dominated Sorting Genetic Algorithm (NSGA) to find the tradeoffs
between reliability and cost for benchmark problems in WDNs [16]. Lack of eliticism, need for
specification of a sharing parameter, and computational complexity of NSGA were alleviated with the
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introduction of NSGA-II by Deb et al. [17]. NSGA-II was used to find the tradeoffs between head deficit
and cost in the Hanoi bench mark problem [18]. A search space reduction has been proposed for the
efficient search of the optimum design regarding only the cost of the network [19]. The problem of
deploying sensors in a large water distribution network was also considered, in order to detect the
malicious introduction of contaminants [20]. A set of realistic objective functions, such as reduction of
detection time and the population protected from consuming contaminated water, was used in their
approach. With the increasing need for optimal operation of WDNs, Shamir and Salomons developed a
method for near-optimal real-time on-line operation of an urban water distribution system with the use of
reduced models [21]. They showed that the current optimization methods are not adequate for the
demands and should be augmented. Another multi-objective approach was introduced for leak detection
and rehabilitation of WDNs using NSGA-II [22]. Their results demonstrated the usefulness of multi-
objective approach in leakage detection as a function of pipe age and diameter. Giustolisi ef al. described a
procedure for the robust design of water distribution networks which incorporates the uncertainty of nodal
water demands and pipe roughness in a multi-objective optimization scheme aimed at minimizing costs
and maximizing hydraulic reliability [23]. Acknowledging the need for efficient optimizers, their method
aimed to reduce the number of runs by introducing several density functions, and was tested for real
WDNs. Optimal pressure management in water distribution systems through the introduction and
regulation of pressure reducing valves were studied by Nicoloini and Zovatto [24]. They argued that
reduction in pressure is aimed at controlling water leakages which, being in some cases a high proportion
of the total volume supplied, are nowadays one of the major concerns for water utilities. The
determination of the number, location, and setting of such valves was formulated as a two criteria
optimization problem and was solved with multi-objective genetic algorithms.

Artificial Neural Network (ANN) has been utilized in ANN-based meta-models to address the
computational complexity and optimization cost of a WDN [25]. Traditionally, Genetic Algorithms (GAs)
have been used to fine-tune topology and weights for the ANN [26, 27]. Self Organizing Map (SOM) is an
unsupervised and versatile ANN which has been utilized in many applications involving pattern
recognition and clustering [28, 29]. SOM networks may be combined with GA to enhance a single
objective optimization process in a real world optimization problem [30]. However, the problem is that
global stochastic search methods such as GAs require many iterations to be performed in order to achieve
a satisfactory solution, and each iteration may involve running computationally expensive simulations.
Recently, this problem has been compounded by the evident need to embrace more than a single measure
of performance into the design process, since by nature multi-objective optimization methods require even
more iterations [31].

This paper presents a hybrid NSGA-II for multi-objective optimization of WDNs, utilizing SOM
network as a tool to find the genotypic or phenotypic similarities at the exploitation phase of the Genetic
Algorithm. The proposed method forms virtual islands or subpopulations that evolve within themselves
for a specified number of generations to speed up the convergence process of the optimization. The
method is coupled with EPANET [32] as the network solver for the analysis of two example networks and
the results are compared with NSGA-II.

2. MULTI-OBJECTIVE OPTIMIZATION

Optimization is a process of finding a solution or a set of solutions for a problem from potential or feasible
solutions that suit a given criteria. When there is only one objective, the preference structure over
solutions is well-defined. It is the simple ranking of the objective values and selecting the solution with the
extreme value. Therefore, in a single objective problem, there is only one optimum solution which may be
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identified with certainty [33]. However, in most realistic engineering design problems, there is more than
one objective to be considered. The objectives are often conflicting, such that improving one objective
may deteriorate the other one(s). Therefore, in a multi-objective optimization, there is more than one
solution available and several methods like Non Dominated Sorting Genetic Algorithm (NSGA), weighted
min-max, Vector Evaluated Genetic Algorithm (VEGA), Lexicographical ordering, and weighted sum
have been presented to find the solution space [33, 34]. NSGA-II [35], which is based on the concept of
dominance in order to produce the Pareto front of the objectives, has been evaluated as one of the most
successful methods for water distribution network optimizations [20].

By definition, in a minimization problem with M objectives, a feasible solution x'
another feasible solution x (stated as x™” < x@), if both of the following conditions are true [35]:

1) The solution x™ is no worse than x in all objectives, i.e. fi ") < fi (x?) forallj=12,... M

objectives:

D "dominates"

XV<xP = vieM, £,V < f,(xP) (1)

2) The design x” is strictly better than x in at least one objective,
or f; (x") < f; (®) for at least one j=1,2,...,M objectives:

W <xP=>Vje M,f_l.(x(')) < f_l.(x(z)) @)

In general, in a multi-objective problem solutions 4 and B may have the following three possible
relations with each other [33]:
A dominates B
B dominates A
Neither A nor B dominate one another.
If two solutions are compared, then the solutions are non-dominated with respect to each other if neither
one dominates the other.
A solution x? € § (where S is the set of all feasible solutions) is non-dominated (or a member of
Pareto front) with respect to a set @ < S, if there is no X e 0, so that x? < x®
Such solutions in the objective (or phenotypic) space are called non-dominated solutions [35].
Dominated and Non-dominated solutions for a hypothetical minimization problem with two
conflicting objectives are graphically depicted on Figure 1. As shown, the ideal point for the conflicting
objectives is considered "unachievable". A search for Pareto front, however, should satisfy two important
properties; diversity and convergence. A diverse solution has the largest spread to cover the complete
range of objectives and at the same time, it should have well-spaced solutions. Convergence of the search,
on the other hand, is a practical guarantee of achieving the Pareto front.
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Fig. 1. Pareto front for minimization of two objectives
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A problem that all stochastic search methods (such as NSGA-II) face is that they rely on their large
population sizes and a large generation number, which can prove to be ineffective for real world situations
where objective function evaluations are time consuming and computationally intensive. For these
problems, increasing the efficiency of search and reduction of iterations for objective function evaluations
can prove to be very efficient. In recent years there have been researches to address the efficiency of the
optimization for computationally intensive problems [36, 37]).

3. SELF ORGANIZING MAPS

Self Organizing Map (SOM) was originally developed by Kohonen is as an ANN in order to study the self
organization processes in the brain [38]. It is an unsupervised ANN, which consists of an input and an
output layer. Figure 2 shows the topology of a SOM. The input vectors are presented to SOM iteratively;
SOM extracts their distinguishable features and adjusts the weights of the network to recognize the same
features in future. In other words, SOM attempts to map input patterns to nodes such that the nearness or
neighborhood relations between the population members (topology) are preserved. Similar patterns are
then mapped to nearby neurons [39]. The unique feature of a SOM network is its capability to classify the
inputs according to their similarity, without any information regarding the grouping or number of
partitioning.

The learning process in a SOM can be summarized as [39]:

1. Assign random values to the network weights, w;;.
2. Present an input pattern or vector, x, to the network.
3. Calculate the distance between pattern x and each weight vector w;, and identify the winning

vector, or
d=min || x—wj|| j=123,..n 3)
Where || _ || is the Euclidean norm and w is the weight vector of each neuron.
4. Adjust all weights in the neighborhood of the winning neuron, by:
wi(t+1) = wyt)+ nkG,){x —wy(0)} 4

Where 7() is the learning rate at epoch #; and £(j,¢) is a suitable neighborhood function.
5. Repeat steps (2) to (4) until a convergence criterion is satisfied.

33 neighbourhood
with radius NE;j=1

xf x3 x5

Fig. 2. Schematic representation of an SOM [28]

SOM may be viewed as a technique that clusters input data to similar individuals which, in turn, may be
utilized to create virtual islands from a large population size in the exploitation phase of an NSGA-II
approach. The clustering technique and evolution of similar individuals are utilized in the proposed
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method to speed up convergence and increase the performance of multi-objective optimization via NSGA-
IL.

4. THE PROPOSED HYBRID SOM-NSGA-II

In the exploitation phase of GA, combination of extremely different individuals is not likely to produce
superior offspring. The competition to excel at the given region or neighborhood of the Pareto front
requires specialized genes. The crossover between drastically different individuals, especially at later
generations, is likely to produce unfit or even unfeasible individuals or so-called lethal offspring.
Therefore, SOM is applied to identify similarities, either genotypic of phenotypic, and use inbreeding to
speed up convergence to the Pareto front. The proposed method has two distinct phases. The exploration
phase which has the usual selection, cross over, and mutation operators as NSGA-II, and an exploitation
phase which utilizes SOM to find similar individuals and form virtual islands or subpopulations. The
process of making these subpopulations may be done by using either the similarity in parameter space,
also known as the genotype space, or by the use of objective space also known as phenotype space.
Phenotypic features are caused by variation in the genotype space. The variable or genotype space usually
consists of numerous variables with different structures such that understanding genotypic features via
formation of subpopulations would produce very useful information about the role of variables.

The second phase applies a localized evolution or inbreeding of the subpopulations. These islands are
handled separately and for a pre-specified number of generations (inbreeding period), and the islands
evolve on their own. The subpopulations are merged into one population and the resulting population
evolves for one generation. Merging subpopulations in regular intervals provides an opportunity for
genetically different offsprings to diffuse or migrate to their more related subpopulations at subsequent
generations and provides an overall diversity enforcement mechanism for the population. The method can
reduce the production of lethal offering, because the genetic variety inside islands is not large. The
offspring have more resemblance to their parents through local selection.

The stepwise algorithm of the method is given below:

1. Initialize map size, map type (genotypic or phenotypic) and chromosomes (population) and
evaluate objective functions.
2. Evolve the population for a given number of generations (Exploration Phase):
chromosomes € NSGA-II (chromosomes, generations)
3. Make a genotypic or phenotypic SOM of the population.
sMap € CreateSOMMap (chromosome, MapSize)
4. Divide the population into N virtual islands or subpopulations according to the resulted SOM.
SPchromosmes (k) € DividePopulation (sMap, chromosome) k=1,2,3... N subpopulation.
5. Evolve each island separately for inbreeding generations.
SPchromosmes (k) € NSGA-II (SPchromosomes (k), InbreedingGenerations)
6. Merge islands and evolve the whole population for one generation
chromosomes € chromosome \U SPchromosmes (j) j=1,2,3,..N
7. Evolve the chromosomes for one generation.
chromosomes < NSGA-II (chromosomes, generations = 1)
8. If the stopping criterion is not met, go to step 3, otherwise stop.

According to this algorithm, the updated chromosomes in each iteration eventually converge to the
Pareto front. This method has the advantage of explicit parallelism; therefore, every island could be
evolved separately with a parallel processor or with a serial implementation. The preferred topology of
SOM is the hexagonal lattice, which has the greatest number of neighbors for a given neuron in SOM.
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From a general perspective, the proposed method aims at increasing the efficiency of large WDNs
optimization through a reduction of function evaluations and a localized search of the Pareto fronts. In this
paper, the proposed method and original NSGA-II are applied to two simple combinatorial problems of
WDN design optimization and the results are compared. Since NSGA-II optimization problems would
involve extended period simulations and evaluation of each network with respect to many objectives, one
may expect that the proposed method would converge faster; a factor that would be very helpful, specially
in real world (large WDNSs) optimization problems. It should be noted that the approach is different from
that of Villmann et al. [30] in the sense that their method utilized SOM for a single objective optimization,
while the present approach utilizes SOM to find subpopulations in multi-objective optimizations in order
to converge faster to the Pareto front. The method has an inbreeding generation after each subpopulation is
evolved separately, as a controlling step for the overall spread check and suitable spacing of the solutions.
Further, the use of genotypic sorting and visualization is a novel approach for understanding the behavior
of many similar solutions with the study of representative of the corresponding subpopulation.

In order to compare the performance of multi-objective methods, the Generational Distance (GD) is
used [40]. GD is a measure of how far the elements in the set of non-dominated vectors are from those in

the Pareto-optimal set and is defined as:
12
GD ="

S 6))

n

Where n is the number of vectors in the set of non-dominated solutions found so far, and d; is the
Euclidean distance (measured in objective space) between each vector and the nearest member of the
Pareto-optimal set. Therefore, a value of GD = 0 indicates that all generated elements are in the Pareto-
optimal set, and any other value indicates how far obtained solutions are from the global Pareto front of
the problem.

5. WATER DISTRIBUTION NETWORK OPTIMIZATION

WDN optimization is a nonlinear and complex multi-objective optimization with feasibility constraints
involving a number of engineering issues, such as multiple operating conditions (often under uncertainty),
reliability, redundancy, resilience, and time scheduling of investments, thus requiring a multi-objective
optimization approach [21].

a) WDN modeling and simulation

Mathematical model of a WDN consists of equations of head loss or energy conservation, and flow
continuity or conservation of mass. Assuming a network of nr number of nodes and nf number of fixed
grade nodes (tanks and reservoirs), flow head-loss relation between any node i and j connected by a pipe
may be written as [33]:

H;-H; = h; = rQ;" + mQy’ (6)

Where H is nodal head, % is head loss, r is resistance coefficient, Q is flow rate, n is flow exponent
and m is minor loss coefficient. The second set of equations, flow continuity at any node #, that has to be
satisfied may be expressed as [33]:

ZQij—Di =0 fOl" i=1,...,nn (7)

Where D; is flow demand at node i and the summation of inflow to node i, 2’ Qj, is over j number of
nodes that are connected to node i by a pipe. The method proposed by Todini and Pilati (1987) has been
used in EPANET to solve the above equations and obtain a static solution for the network [33].
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b) Feasibility constraint

Usually, WDN solutions are considered feasible if they satisfy a minimum required head (H') at every
node. This minimum head requirement is essential to the accuracy of the pressure dependent analysis of
the WDN [33]. Utilization of the pressure dependent analysis is not needed here due to the application of
the feasibility constraint [41]. From a degree of constraint violation perspective, solutions may be ranked
with respect to each other. The constraint violation for any solution can be calculated using a failure index
as [42, 43]:

I, = = ®)

Where e;= 0if H; 2 H; and e;= Q; (H' - H;) otherwise. A solution is considered feasible when I,= 0 and
infeasible otherwise.

In this study, a method is used to compare solutions with different I, values that does not require
penalty coefficients. The method was first introduced by Deb and Agrawal [42]. According to this
method, a solution x(i) is constraint-dominating another solution x(j), if any of the following is true:

1. Solution x(i) is feasible and solution x(j) is infeasible,

2. Solutions x(i) and x(j) are both infeasible, but x(i) has a smaller I, value, or

3. Solutions x(i) and x(j) are both feasible and solution i dominates solution j.
This method has the advantage of being incorporable into a non-domination ranking for any number of
constraints, while not requiring any penalty function.

¢) Cost objective

In real world situations, the cost of constructing a new WDN may be estimated, with a reasonable
accuracy, by considering pertinent parameters like material and labor costs, earth work, equipment, energy
consumption, maintenance, and other practical considerations. However, for simplicity, the cost of
constructing a new WDN in benchmark problems is usually given by simple equations or tables that relate
cost to pipe diameters and length only [30,32] .

d) Reliability objective

Low quality or lack of service in a WDN would cause unpleasant damages to consumers and
providers alike. Therefore, reliability of a network has become a major concern in recent optimization
problems and neglecting its importance has been a major reason for the limited acceptance of single-
objective optimization methods whereby the cost of a WDN is minimized [27]. Reliability is usually
defined as the probability that a system will perform its mission within specified limits for a given period
of time in a specified environment. For a large system with many interactive subsystems (such as a water
distribution system), it is extremely difficult to compute the mathematical reliability analytically. Accurate
calculation of a mathematical reliability requires knowledge of the precise reliability of the basic
subsystems or components and the impact on accomplishing the mission caused by the set of all possible
subsystem (component) failures [1]. Researchers have suggested and used surrogate or indirect methods
(indices) to represent the reliability of WDNSs.

1- Minimum surplus head index (I,;): The surplus head at a node is equal to the difference between the
head H at which the demand Q is supplied, and the minimum required head or design head H' at that node.
This surplus head indicates the available energy for dissipation during failure conditions. The minimum
surplus head index I,, is defined as:
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I,= min{ H;- H} } forj=12,..,nn 9)

It is believed that maximization of the available surplus head at the most depressed node improves the
reliability of a network [43, 44].

2- Total surplus head index (I;): Another index that can be used to reflect the reliability of a network is
the summation of surplus head at each node. In a mathematical form, the total surplus head index, I,, may
be expressed as:

L=2{H;-H}} for  j=1,2,..nn (10)

Maximization of I, improves the system reliability or capability of the network to adjust under
stressed conditions [43, 44].

3- Resilience index (I,): A more practical reliability index often used by researchers [20, 21, 22] was
proposed by Todini [43]. It is based on the concept that the power input into a network is equal to the
power lost internally (to overcome the friction) plus the available power at demand points:

Pinp= int + Pnut (l 1)
The total input power into a network including power supplied by pumps is given by
Pinp=72Qka+2Pi (12)

Where Q; and H;, are discharge and head corresponding to each reservoir node k; P; is power supplied by
pump i, summed over all pumps. Total output power or consumed power in the network is given by:

P~y 2 Q;H; (13)

Where Q) is demand at node j, and H; is head at which @ is supplied.
The resilience index of a network is then defined as;

ZQ/ (H, - H./‘l)
(14)

1 =—

nf
Q. OH, +> PIy)-Y 0H,
k=1 i=1 Jj=1

r

Where nn is number of nodes, nf'is number of reservoirs, and mpu is number of pumps in the network [43,
44].

In a multi-objective WDN optimization problem, networks are sought that satisfy the aforementioned
feasibility constraint and are non-dominated (Pareto front) with respect to cost and reliability objectives.
In order to prove the effectiveness of the proposed optimization method, two typical WDN example
problems and the widely used cost equations and resilience index (as a reliability measure) are considered
in this study.

6. EXAMPLE PROBLEMS
a) Example 1: The two looped network

The first example problem solved is the problem presented originally by Alperovits and Shamir [2], whose
layout, nodal demands, and pipe lengths are shown in Fig. 3. The network consists of eight 1000 m long
pipes, a Hazen-Williams C value of 130, seven nodes, and a single reservoir. The minimum pressure
requirement at every node is 30 m. Available pipe diameters and their costs are shown in Table 1.
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Fig. 3. The two looped network topology [18]

Table 1. Available pipe diameters and their costs

. Pipe. 1 2 3 4 6 8 10 12 14 16 18 20 22 24
diameter(in)
. Pipe 2541 50.8|76.2 | 101.6 | 152.4 | 203.2 | 254 | 304.8 | 355.6 | 406.4 | 457.2 | 508 | 558.8 | 609.6
diameter(mm)
Cost per unit
length($) 2 5 8 11 16 23 32 50 60 90 130 | 170 | 300 550
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Fig. 4. Pareto front plot for SOM-NSGA-II and NSGA-II for the two looped example

The solution space of two looped network is relatively small and optimization is not particularly
challenging. However, as it can be seen from the Pareto front plot (Fig. 4), the range of the Pareto front
discovered by the proposed SOM-NSGA-II is larger. Particularly, the Pareto front is more diverse and
includes more solutions at the lower cost networks. It was concluded that SOM-NSGA-II has been more
successful in finding a diverse range for the Pareto front. For this optimization, a SOM of different map
sizes with phenotypic and genotypic inbreeding was used. Every island was evolved for three inbreeding
generations and the overall generations for both methods were 100.

Generational Distance, shown in Table (2), is calculated using the distance of individual Pareto front
members of each method with the Pareto front of all methods together. The objective values are
normalized with the maximum and minimum values from the ensemble of all methods. As reflected in the
smaller GD value, the phenotypic method is more successful in finding a better Pareto front with respect
to the genotypic method. In general, a larger map size produced better results in both the genotypic and
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phenotypic approaches, however, the map size in this example was kept in a reasonable range of 2x2 and
3x3. Comparison of GD results for these optimum map sizes in Table 2 shows a smaller GD (i.e. a better
performance) for the larger map size.

Table 2. Normalized Generational Distance (GD) for the two looped network

Genotypic SOM Phenotypic SOM
SOM-NSGA-map size 2x2 1.86 0.82
SOM-NSGA-map size 3x3 1.25 0.74
NSGA-II 1.52 1.52

b) Example 2: Hanoi WDN

Hanoi water distribution network has 32 nodes and 34 pipes organized in 3 loops [45]. In this
benchmark problem there is only a single fixed head source at elevation 100 m and no pumping facilities
are considered. Minimum head requirement at all nodes is fixed at 30 m and commercially available pipe
diameters are 12, 16, 20, 24, 30, and 40 inches [14]. Construction cost for a new network is assumed to be
a non-linear function of pipe diameter and length,

C;=11D;j"° L; (15)

Where C is cost in dollars, D is diameter in inches, and L is length of pipe in meters. A schematic view of
Hanoi WDN is shown in Fig. 5. In this example, 3 inbreeding generations for SOM-NSGA-II and 200
generations for both methods were used.

33 ey 34

Fig. 5. Hanoi WDN layout [45]

Figures 6 and 7 show the Pareto front discovery by genotypic and phenotypic approaches, respectively. As
shown on the figures, both approaches have resulted in very similar satisfactory resilience indexes for
reasonable costs at all map sizes. However, the two approaches had different GDs.

GD was calculated using the same method of normalization of values with the maximum and
minimum of all methods together (Table 3). As in the previous example, the phenotypic approach
performed better than the genotypic approach and standard NSGA-II in all map sizes as evidenced by
smaller GD values in Table 3. Although in this example increasing the map size decreased the SOM
clustering error, it did not show a consistent effect in minimizing GD. Further increase of the map size
(beyond 5x5) did not improve SOM clustering performance as more cells remained empty. In general, the
enhanced performance of optimization in SOM-NSGA-II is mainly due to the clustering effect of SOM
applied to the population.
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Fig. 7. Pareto front plot for phenotypic SOM-NSGA-II and NSGA-II for Hanoi WDN

Table 3. Normalized Generational Distance for Hanoi WDN

Genotypic SOM Phenotypic SOM
SOM-NSGA-map size 2x2 1.90 0.75
SOM-NSGA-map size 3x3 2.88 2.18
SOM-NSGA-map size 4x4 2.14 0.46
SOM-NSGA-map size 5x5 2.08 0.65
NSGA-II 2.40 2.40

Figure 8 shows two visual representations of the entire population. The unsorted genetic structure of
the population from NSGA-II is shown on the left hand side of the figure and the genotypic sorted
population shown on the right hand side. As clearly depicted on this figure, the unsorted population is not
coherent, nor does it have any structure or pattern. On the contrary, the sorted population is much better
structured and similar individuals are recognizable in the four groups of subpopulations.

The structures of subpopulations are depicted in Fig. 9. In this figure, all 200 solutions in the
Pareto front are categorized in 4 similar subpopulations with 70, 30, 70, and 30 solutions in each
subpopulation, respectively. The color coding corresponds to the pipe sizes (mm) that are allocated for
every link (out of 34). For example, some lighter colored pipes (pipes 1 to 5) do not change color in all
Pareto front solutions, which reflects their importance in the network. A feasible Pareto front network
requires high diameters for such pipes, and hence, a limited pressure drop there. In other words, pressure
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drop in such pipes has a significant importance to the pressure distribution in the entire network. On the
other hand, there are pipes (pipes 30 to 34) that take up different colors in different Pareto front solutions.
Pressure drop in such pipes is not crucial to the feasibility of the network.
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Fig. 8. Unsorted (left) and genotypic sorted (right) color coded population of Hanoi
example problem (pipe diameters in mm)
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Fig. 9. Color coded genotypic diversity of Pareto front for Hanoi WDN (pipe diameters in mm)
7. CONCLUSION

A hybrid method, SOM-NSGA-II, was presented for multi-objective optimization of combinatorial
WDN:s. In this method, SOM was incorporated into NSGA-II and applied to two WDN example problems.
SOM successfully discovered similar individuals in the population and formed virtual islands or
subpopulations. The crossover operation within subpopulations at the constraint dominated region of the
solution space resulted in a faster convergence (in Hanoi WDN) and a wider Pareto front (in the two
looped WDN). One would expect the method to be more computationally effective than standard NSGA-
IT for realistic optimization problems, where the computations are more intense than simple example
problems. From a fundamental perspective, SOM incorporation pushed the method closer to the natural
evolution as crossover predominantly happens within similar individuals or niches in the nature. An added
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advantage of the method is the usage of genotypic sorting of the population by SOM for visual
representation of the structure of the Pareto front. The resulted genotypic maps showed the relative
importance of pipe diameters and their variation extent in the Pareto front. This can prove to be a very
important visual aid for decision makers and designers of WDNSs.
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