
Iranian Journal of Science & Technology, Transaction B, Engineering, Vol. 31, No. B1, pp. 123-141 
Printed in The Islamic Republic of Iran, 2007 
© Shiraz University 
 

 
 
 

A GENERAL MULTI-PLANE MODEL FOR  
POST-LIQUEFACTION OF SAND* 

 
 

S. A. SADRNEJAD**   
Dept. of Civil Engineering, K.N.Toosi University of Technology, Teheran, I. R. of Iran 

Email: sadrnejad@hotmail.com  
 

Abstract– A multi-plane model for the post-liquefaction of the undrained behaviour of sand is presented. The 
model incorporates the critical/steady state concept that postulates the existence of a state where sand 
continuously deforms at a certain constant effective stress depending two main parameters of both initial bulk 
parameters (i.e. void ratio or relative density) and stress level (i.e. mean stress). The local instability of 
saturated sand within post-liquefaction is highly dependent on the residual inherent/induced anisotropy, 
bedding plane effects, and stress/strain path. 

Most of the models developed using stress/strain invariants are not capable of identifying the parameters 
depending on orientation such as fabric. This is mainly because stress/strain invariants are quantities similar 
to scalar quantities and not capable of carrying directional information with themselves.  

The constitutive equations of the model are derived within the context of the non-linear elastic behaviour 
of the whole medium and the plastic sliding of interfaces of predefined multi-planes.  

The proposed multi-plane based model is capable of predicting the behaviour of soils on the basis of 
plastic sliding mechanisms, elastic behaviour of particles and possibilities to see the micro-fabric effects as 
natural anisotropy as well as induced anisotropy in plasticity. The model is capable of predicting the 
behaviour of soil under different orientations of the bedding plane, and the history of strain progression 
during the application of any stress/strain paths. The influences of the rotation of the direction of principal 
stress and strain axes and induced anisotropy are included in a rational way without any additional 
hypotheses. The spatial strength distribution at a location as an approximation of the probable mobilized 
sliding mechanism is presented by an ellipsoid function built up on the bedding plane.           
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1. INTRODUCTION 
 

Li and Dafalias [1] pointed out that the classical stress ditatancy approach in its exact form ignored the 
extra energy loss due to the static and dynamic constraints at particle contacts and led to a unique 
relationship between the stress ratio and dilatancy. Furthermore, it has been shown by Manzari and 
Dafalias [2], Wan et al. [3], and Li and Dafalias [4] that in order to model sand behaviour over a full range 
of density states, the additional dependence of dilatancy on the material internal states, and the sliding 
mechanism are needed. Further, the material state must be described in reference to the critical/steady 
state line [5, 6]. Accordingly, any local sliding instability may take its limited share in global behaviour 
and through a properly controlled scheme, the possibility of the deformability of a post-liquefied zone will 
proceed. 

In addition, due mainly to the process of deposition under earth gravity, the behaviour of insitu sand is 
inherently anisotropy, meaning the stress-strain-strength relations for the same sand may vary as the stress 
tensor rotates relative to the orientation of the soil fabric. The observation and experiment on the flow-
type behaviour of liquefied soil has revealed that the influence of inherent fabric anisotropy on the residual 
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strength of a granular soil is so drastic that the inherent anisotropy can no longer be ignored in sand 
modeling. The influence of fabric anisotropy has been known since the emergence of the geo-mechanics 
[7]. However, anisotropy manifested itself through the directional dependence of deformation 
characteristics of granular materials which has been widely documented in the literature [8, 9]. 
Furthermore, the degree of anisotropy may vary quite significantly, depending on the soil composition, or 
even other sources such as electro-chemical properties of pore water, consolidation history, etc. Given the 
intrinsic oriented nature of the soil fabric, it is important to include the effect of anisotropy in a rational 
way. The major obstacles, in this respect, are our ability to properly define the spatial and temporal 
variations of the soil properties, deformablities, hardening and boundary conditions. The value of a model 
lies primarily in its ability to capture the basic trends in the material behaviour and thereby provide a more 
realistic representation of the problem. 

However, more than just the fabric property of natural soil, the response of granular materials to a 
given stress depends on the orientation of that stress, whether, the particles alignment is constituted in a 
river, beach, coastal sands or artificially deposited sands. This phenomenon was also observed in a random 
arrangement of constituent glass balls, in which there is no obvious effects of fabric on the composition by 
Oda, [10-15]. This feature is, in general, known to be due to gravity and the motion tendency of the 
constituent particles towards the earth centre. This tendency can actually affect the geometry of the contact 
points of each particle no matter the shape and particle sizes. Induced anisotropy is generally initiated and 
constructed during plastic shear deformation and plays a key role in understanding the plastic behaviour of 
granular soil in a general stress state, including the rotation of principal stress axes (e.g. Sadrnejad, [16-
20]).  

In this study, a certain function of local strength variation is defined that depends on the overall 
causes of inherent anisotropy at that location. This function can present the maximum shear to normal 
stress as tan(ϕ) in any probable sliding direction through the medium. Consequently, any change in the 
major principal stress axis direction is faced on new sets of maximum strengths against the sliding 
mechanism of grains. 
 

2. STRAIN DISTRIBUTION AROUND A POINT 
 
In general continuum mechanics, to define strain distribution at a point, the components are simply  
considered on the outer surface of a typical dx, dy, dz element. This method makes the solution to be 
considered uniform and the homogeneous strain distribution of the nine components over the outer surface 
of such dx, dy, dz element on three perpendicular coordinate axes. There is a further consideration in 
addition to the requirement that the displacements of a granular medium provide due to 
slippage/widening/closing between particles that make a contribution to the strain in addition to that from 
the compression of particles. Consider two neighbouring points on either side of the point of contact of 
two particles. These two points do not in general remain close to each other but describe complex 
trajectories. Fictitious average points belonging to the fictitious continuous medium can be defined which 
remain adjacent so as to define a strain tensor. The problem presents itself differently for disordered 
particles compared with the ordered sphere of equal sizes. In this case, small zones may even appear in 
which there is no relative movement of particles. This can lead to specific behaviour such as periodic 
instabilities known as slip-stick, creating non-homogeneity in strains and displacements. 

The effects of non-homogeneity in the mechanical behaviour of non-linear materials are very 
important and must somehow be considered. Furthermore, these non-homogeneities are mostly neglected 
in mechanical testing because strains and stresses are usually measured at the boundary of the samples and 
therefore have to be considered reasonably within the whole volume.  
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Solving non-linear problems, the mechanical behaviour depends strongly on the stress/strain path as 
well as their histories. Upon these conditions, it may be claimed that the consideration of strain 
components along three perpendicular coordinate axes may not reflect the real historical changes during 
the loading procedure. In the most extreme case, the definition of a sphere shape element dr (instead of dx, 
dy, dz cube) carrying distributed strain similarly on its surface can reflect strain components on infinite 
orientation at a point when dr tends to zero. 

                                 
(a)                                                                                                  (b) 

                                                                                                                      
Fig. 1. a) Sphere elements, b) Typical deformed element 

 
The finite strain at any point in three dimensions by coordinates (x, y, z) relate to the displacements of 

the sides of an initial rectangular-coordinate box with sides of length dx, dy, and dz to form the three sides 
of a parallelepiped. This configuration of strain is established by considering the displacements of the 
corner points (x, 0, 0), (0, y, 0), and (0, 0, z). This kind of strain approach leads to defining a (3×3) strain 
tensor including six components to present the displacement gradient matrix at a node. Accordingly, any 
displacement and corresponding gradient have to be defined as independent components on three 
perpendicular coordinate axes. 

Figure 1 shows sphere elements and a typical deformed shape. Obviously there is a certain history of 
displacement on any random orientation through the element. These are abbreviated in three, when a box -
shape element is employed. To avoid not missing any directional information of strain, a spherical element 
carrying strain components over its surface as tangent and normal to the surface must be employed. This 
form of strain, which certainly represents a better distribution includes all directional information. 
Certainly, to obtain the strain components as presented on planes around box element, strain variation is 
integrated over the sphere surface. However, a predefined numerical integration may be employed to ease 
the solution. Numerical integration generally simulates the smooth curved sphere surface to a composition 
of flat tangential planes, making an approximated polygon to sphere surface. The higher the number of 
sampling planes, the closer is the approximated surface to the sphere. Clearly, if the number of sampling 
planes is taken as six, the approximated surface is the same as the  normal dx, dy, dz box element. 
 

3. MULTI-PLANE FRAMEWORK 
 
Grains in a granular materials consisting of contacts and surrounding voids are particulate media that are 
mostly considered continuum for ease. The accurate behaviour of such particulate materials is to be 
investigated through micro-mechanics. However, the micro-mechanical behaviour of granular materials is 
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therefore inherently discontinuous and heterogeneous. The macroscopic as an overall or averaged 
behaviour of granular materials is determined not only by how discrete grains are arranged through the 
medium, but also by what kinds of interactions are operating among them. To investigate the micro-
mechanical behaviour of granular materials, certainly the spatial distribution of contact points and 
orientation of grains must be identified. From an engineering point of view, the main goal is to formulate 
the macro-behaviour of granular materials in terms of micro-quantities. However, two well-known 
theories exist which explain the relation between micro-fields and macro-fields as macro-micro relations 
in a consistent manner as the average field theory and the homogenization theory. 

For a granular material such as sand that supports the overall applied loads through contact friction, 
the overall mechanical response ideally may be described on the basis of the micro-mechanical behaviour 
of grains interconnections. Naturally this requires the description of overall stress, the characterization of 
fabric, representation of   kinematics, development of local rate constitutive relations and evaluation of the 
overall differential constitutive relations in terms of the local quantities. The representation of the overall 
stress tensor in terms of micro level stresses and the condition, number and magnitude of contact forces 
has long been the aim of numerous researchers [21, 22]. 

Multi-plane framework, by defining the small continuum structural units as an assemblage of particles 
and voids that fill infinite spaces between the sampling planes, has appropriately justified the   
contribution   of   interconnection   forces in overall macro-mechanics. Upon these assumptions, plastic 
deformations are likely to occur due to sliding, separation/closing of the boundaries and elastic 
deformations which are the overall responses of structural unit bodies. Therefore, the overall deformation 
of any small part of the medium is composed of the total elastic response and an appropriate summation of 
sliding, and the separation/closing phenomenon under the current effective normal and shear stresses on 
sampling planes. These assumptions adopt overall sliding, separation/closing of inter-granular points of 
grains included in one structural unit are summed up and contributed as a result of sliding and  
separation/closing surrounding boundary planes. This simply implies yielding/failure or even ill-
conditioning and bifurcation response is possible over any of the randomly oriented sampling planes. 
Consequently, plasticity control such as yielding should be checked at each of the planes and those of the 
planes that are sliding will contribute to plastic deformation. Therefore, the granular material mass has an 
infinite number of yield functions usually one for each of the planes in the physical space.  

Figure 2 shows the arrangement of artificial polyhedron simulated by real soil grains. The created 
polyhedrons have roughly 13 sliding planes, passing through each point in the medium. The location of tip 
heads of normal to the planes defining corresponding direction cosines are shown on the surface of the 
unit radius sphere.  
 

 
Fig. 2. Soil grains, artificial polyhedrons, and sampling points 

 
In an ideal case, the normal integration is considered as summing up the individual micro effects 

corresponding to the infinite number of micro sampling planes. 
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The choice of 13 planes for the solution of any three dimensional problems is a fair number. The 
orientation of the sampling planes and direction cosines of two perpendicular on plane coordinate axes and 
weighted coefficients [23] for an employed numerical integration rule and the calculation of a stress tensor 
of each plane are shown in Fig. 3. 

Upon yield criterion in plasticity, the stress condition exceeds the yield limits, plastic sliding or 
widening/closing take place as an active plane. Therefore, one of the most important features of a multi-
plane framework is that it enables the identification of the active planes as a matter of routine. The 
application of any stress path is accompanied by the activities of some of the 13 defined planes at any 
point in the medium. The values of plastic strain on all the active planes are not necessarily the same. 
Some of these planes initiate plastic deformations earlier than others. These priorities and certain active 
planes can change due to any change of direction of the stress path. A number of active planes may stop 
activity, will some inactive ones become active, and some planes may take over others with respect to the 
value of the plastic shear strain. Thus the framework is able to predict the mechanism of failure. 
 

  
Fig. 3. Direction cosines, weighted coefficient, demonstration of 13 planes 

 
4. STRENGTH ELLIPSOID 

 
In general, a quantitative description of initial micro-fabric would enhance the characterization and 
forecasting of sand behaviour under different loading. On loading the fabric is continuously altered. 
Hence, it is necessary to develop techniques to quantify a changes in fabric as well. While the material is 
distorted, the fabric of the material changes and therefore, a strain or displacement field occurs in the 
material. Consequently, the strain and induced fabric of a material are inherently related to each other[24].  
A popular approach for the formulation of strength criteria for anisotropy granular materials is the 
generalization of isotropic ones. Such a criterion is usually geometrically interpreted as a limiting 
envelope in a stress space, which means that a condition of failure occurs when a given stress vector 
touches the failure envelope. Since the condition for failure is intrinsic to the material, the failure criterion 
can be defined differently for any probable sliding plane through the material. Accordingly, the stress ratio 
can not exceed the corresponding value of (tan(φ)), neither on the planes of weakness nor on any other 
plane which does not tend to slide.  
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On a loading orientation inclined by three angles (direction cosines) with respect to the bedding plane, 
a certain sliding mechanism composed of active sliding planes provides a value of stress ratio which 
corresponds to the most active plane and has a limitation of (tan(φ)) that is governing sand strength against 
sliding. Therefore, on any orientation within the sand, the state of strength depends on the geometry of the 
bedding plane and the orientation of the applied load with respect to the bedding plane. To describe the 
strength, (tan(φ )), at any orientation, it is necessary to find a way of summarizing the configuration of 
different strengths corresponding to all probable directions passing through the medium.  

For ideal granular media with no preferential orientation a spherical envelop of strengths (tan(φ)) may 
provide uniform sliding strength on any orientation. However, to consider fabric effects due to the bedding 
plane, an ellipsoidal envelop of strength may be the most suitable presentation of strength variation on 
different directions. The longest diameter of this ellipsoid is always normal to the bedding plane. 
Configuring the 13 predefined planes in the strength ellipsoid provides a certain elliptical section on each 
plane that presents the variation of strength with respect to the sliding orientation. In other words, the tips 
of the arrow heads of strength value of different orientations collectively define a built up geometrical 
surface called the strength ellipsoid. Obviously, the size of the strength ellipsoid of each plane is different 
and presents maximum and minimum strengths for sliding along the longest and shortest ellipse, 
respectively. The other sliding orientations are faced with strength limitations in between depending on 
the direction of shear stress on the plane with respect to the bedding plane. 

Adopting the multi-plane mechanism of sliding planes configured in Fig. 3, with respect to the 
orientation of the applied major principal stress axis, these planes are configured in a symmetric manner 
around a major principal axis. Any change in the principal stress axis direction creates a new set of 
strength ellipses with different strengths against sliding directions on different planes.      

Extensive similar aspects to this subject have been proposed by different authors [25, 26, 11-14]. 
Accordingly, the emphasis on these studies, were on the evolution from inherent to induced anisotropy. 
[8], proposed a diagram of frequency of contacts as a function of the orientation of their normals for direct 
shear test, both before and after shearing as fabric ellipsoid.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Typical ellipse strength of a plane in ellipsoid strength 
(Embedded plane assumed to be horizontal) 

 
This study, carried out for the micro-fabric behaviour of loose, medium, and dense granular materials, led 
to the establishment of a statistical criterion of natural anisotropy based on the hypotheses that experience 



A general multi-plane model for… 
 

April 2007                                                                               Iranian Journal of Science & Technology, Volume 31, Number B2 

129

accepted as probable. The fabric anisotropy law is represented as a spatial closed ellipsoid strength 
function in x, y, and z coordinates as follows: 
 

01/// 222 =−++ AzByBx                                                           (1)  
 
A, B, and C are three mutually perpendicular diameters of ellipsoid respectively. A construction of a 
typical ellipsoid is shown in Fig. 4.                                                                  

Furthermore, to overcome the anisotropy concerning the loading orientation, a possibility of having 
all different probable sliding mechanisms must be provided in the used model. In this way, the application 
of any arbitrary loading or stress path leading to a certain sliding mechanism obeys the minimum energy 
level in natural law. These possibilities are provided in an elastic-plastic Multi-Plane model.    

To find the strength ellipsoid diameters, two triaxial standard compression tests must be arranged; one 
with a horizontal bedding plane and vertical loading axis (test one), and the other with both a vertical 
bedding plane and a loading axis (test two). According to the author's experience (Sadrnejad (1997)) [26], 
in both of the two tests, planes 1 to 4 are mostly active, however in the second case, because of the 90 
degree rotation of the load in axis, the smaller ellipse of strength on active planes is provided by the main 
strength ellipsoid.  There, friction angles are applicable, while the loading axis is diverged with respect to 
the normal axis to the bedding plane. In a triaxial compression test, the sliding orientation on active planes 
is along the longest diameter of each plane strength ellipse. Furthermore, these four most activated planes 
in test one are symmetrically located around a loading axis that is identical with the normal line to the 
bedding plane. Therefore, for any axe-symmetry loading conditions similar to the triaxial compression 
test, there should be axe-symmetry of strength with respect to the normal axis to the bedding plane. In this 
case, the obtained ϕ value from the test and the coordinates of tip head arrows of shear strain on planes 
provide a unique equation which relates to the unknown strength ellipsoid parameters. However, due to 
axi-symmetry, two minor diameters of the strength ellipsoid are equal, so B=C. To find the coordinates of 
tip head arrows  of shear strain, one simply can obtain the direction cosines of shear stress/strain on the 
corresponding plane, considering the length of the arrow to be equal to tan(ϕ), and one point of strength 
ellipsoid is known. It must be added that in triaxial standard tests, the coaxiality of strain and stress is 
valid, therefore, to obtain any active plane sliding it is enough to find the direction of corresponding shear 
stress. In the second compression test, the loading axis is rotated by 90 degrees, so the same active planes 
rotated by same angle and their strength ellipses as well. In this case, the geometry of strength ellipsoid is 
the same as test one. However, different tan(ϕ) and coordinates of tip head arrows are provided that lead 
to providing the second relation between strength ellipsoid parameters. The simultaneous solution of both 
equations presents the unknown parameters A, B, and C. Assuming the direction cosines of the advanced 
active planes in the first and second tests as nm,,l and ''' ,, nml , respectively, A and B are calculated as 
follows: 
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The simultaneous solution of two equation yields: 
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Performing a compression plane stress, the axe-symmetry condition is not available any more. The 

prevention of out of plane strain affects the activation and sliding orientation of planes. In this case, the 
conservation of the minimum level of energy law forces the mechanism to occur in a different manner as 
well as geometry. The change in the sliding orientation on an active plane from the first natural possible 
case may make a necessity of grain rolling under the constrained conditions. This may lead the sliding to 
face local interlocking, which generally appears as unstable higher friction angle ϕf, creating an unstable 
larger strength ellipsoid for these kinds of sliding planes. This unstable ellipsoid will disappear as soon as 
the stress path passing over the top peak shear strength, softening mode, and strength condition come back 
to a normal strength ellipsoid. Certainly, the larger strength ellipsoid provides a larger unstable 
intersection strength ellipse on the corresponding plane.  

To find out the values of the internal friction of 13 planes oriented inside a certain strength ellipsoid, 
first the direction cosines of the stress vector as ''' ,, iii nml are calculated as follows:  
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The value of )tan( 'ϕ in direction ''' ,, iii nml is obtained as follows: 
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The direction of the calculated shear stress on the ith plane is associated with a certain value of internal 
friction angle ϕi in the strength ellipsoid. This friction angle can be obtained through the equation by 
intersection of the ellipse plane with the strength ellipsoid having the direction of shear stress direction 
cosines. Simply, any change of shear stresses on these planes results in new sliding mechanism and 
strengths.  
 

5. CONSTITUTIVE EQUATIONS 
 
Constitutive modeling of particulate material including different features has been the subject of numerous 
investigations during recent years, primarily because of the increasing awareness of the complexity of the 
loading conditions to which particulate material structures are subjected and the corresponding need for a 
more accurate analysis for the prediction of the safety of such structures. The parallel development of 
more powerful and efficient numerical methods of analysis has motivated and allowed the use of 
sophisticated constitutive models beyond the linear or simple non-linear elastic-plastic constitutive laws 
which were utilized in the early stages. 
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Most of the proposed models are based on the theory of elastic-plasticity, incorporating different yield 
criteria, flow and hardening rules. Strain hardening models according to various isotropic, kinematics or 
mixed hardening rules have been proposed. These models usually deal with a single or a combination of 
stress invariants. The principal axes rotation of stress/strain or both, and induced/inherent anisotropy have 
been observed in many tests. However, a model based on the invariant of the stress/strain tensors, 
therefore cannot cope with the real behaviour of particulate material such as soil under a complex loading 
program while either the values of stress or strain invariant are kept constant. 

The first multi-laminate model was presented by Zienkiewicz et al. [27]. A multilaminate model for 
granular material was developed by Sadrnejad et al. and Sadrnejad. Also, a micro-plane model was 
developed by Bazant, et al., [28]. 

For the soil mass, the overall stress-strain increments relation, to obtain elastic-plastic strain 
increments (dεep), is expressed as: 

dεep = Cep . dσ                                                (9) 
 
Cep is the elastic-plastic compliance matrix. Clearly, it is expected that all effects and changes in elastic 
and plastic behaviour be included in Cep. To find out Cep, while decomposing the global behaviour into 
different sampling planes, the constitutive equations for a typical slip plane must be considered in the 
calculations. Consequently, the appropriate summation of all provided compliance matrices corresponding 
to the considered slip planes yields overall Cep, therefore, the strain increment at each stress increment is 
calculated as follows: 
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Lε and Lσ are transformation matrices for strain and stresses, respectively. 
 

6. CONSTITUTIVE EQUATIONS FOR SAMPLING PLANE 
 
A sampling plane is defined as a boundary surface that is a contacting surface between two structural units 
of polyhedral blocks. These structural units are parts of a heterogeneous continuum, for simplicity, defined 
as a full homogeneous and isotropic material. Therefore, all heterogeneities behaviour is supposed to 
appear in inelastic behaviour of the corresponding slip planes. In many cases, however, the medium is 
known to be heterogeneous and the notion of continuum is used to describe it on a scale much larger than 
the scale of the real particles. When this approach of 'pre-smoothing' is taken a priori, without any 
knowledge of the distribution and aggregation of specific microstructure, information on all internal detail, 
on the distribution of inter-granular stresses, strains and many other real features is forfeited. Since in 
reality this information is necessary to understand the overall deformation resistance of the soil, this aspect 
becomes too complicated. Therefore, the material that is contained inside a structural unit is treated as a 
'black box'. 

In many instances, the scale of the microstructure is coarse enough to be out of the range of such 
specific considerations of slip theory, and the individual component blocks can be considered as a 
continuum with well-defined plastic resistances and hardening behaviour. In this research, the individual 
component blocks of the overall media deform collectively as a heterogeneous (but compatible in 
deformations with other blocks) assembly of continua, interacting with each other only through the 
boundary conditions applicable at their various interfaces. The deformations of such coarse heterogeneous 
assemblies are best considered in full detail, preserving the information of the internal variations of 
effective deformational resistances in individual component blocks and associated internal stresses. This 
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can then be followed by an averaging or 'post-smoothing' approach, which permits the monitoring of the 
evaluation of internal deformations in addition to the overall deformation resistances [29]. 

The elastic-plastic constitutive equations of a sampling plane start with the classical decomposition of 
strain increments under the concept of elastic-plasticity in elastic and plastic parts are schematically 
written as follows: 

dε ep
i  = dε e

i  + d ε p
i                                                                 (11) 

The increment of elastic strain (dεe ) is related to the increments of effective stress (dσ ) by: 
dε e

i  = [D e
i ]-1 dσ i                                                                 (12) 

[D e
i ]-1 is a nonlinear elastic compliance matrix for the ith plane and is usually obtained as follows: 
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Ki and Gi are the bulk and the shear modulus for the ith plane, respectively. Any kind of non-linearity as 
the change of these parameters may be applied in an incremental algorithm. A simple form of this change 
in shear and bulk modulus is as follows: 
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Gio and h are material properties, e is the void ratio and Pa is the atmospheric pressure. The bulk modulus 
may be computed by assuming a value for Poisson’s ratio. The dilatancy factor for the ith plane is defined 
as: 
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p

inδε  and  p
itδε  are plastic normal and shear strain components on the ith plane, respectively. 0id and m 

are two material constant obtained in calibration. iη  and ciη are stress ratio )/( nii στ and  the slope of the 
steady state line that is a certain percentage of tan(φfi) for the ith plane.  Ψ  is the steady state parameter 
and is assumed to be equal for all planes and is calculated as follows:  
 

  cree −=Ψ                                                               (17) 
 

cre   is the critical void ratio that is obtained as follows: 
 

ξλ )/( qpee Ccr ′−= Γ                                                      (18) 
 
 Γe ,ξ   and Cλ    are macroscopic material constants.  

The yield criterion is locally defined by the ratio of the shear stress component (τi) to the normal 
effective stress (σ′ni) on the ith sampling plane. The simplest form of yield function, i.e. a straight line on τ 
versus σn space, is adopted. As the ratio τ/σn increases, the yield line rotates anti-clock-wise due to 
hardening and approaches Mohr-Coulomb's failure line and finally failure on corresponding plane takes 
place. The equation of yield function is formulated as follows: 
 

fi (τi , σni , ηi) = τi - C′i -  ηi σni                                             (19) 
 
C′i is cohesion of soil for the ith plane.  
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A loading parameter, Li is defined for the ith plane as follows [30]: 
 

)/(/)())/()/((/1 piinipiniiiiiininiipii KdKdddfdfKL ησσητττσσ ′=′=∂∂+′′∂∂= −                       (20) 
 
is calculated as follows: 
 

))/((][ 21
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iciipi eGehhK ηη                                                 (21) 
 
n, 1h  and  2h  are material constants. The elastic-plastic strain components for the ith plane are calculated 
as follows: 
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These equations are written in matrix form as: 
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Consequently, the elastic-plastic compliance matrix for the ith plane is written as follows: 
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This 2×2 matrix can be transformed into a 6×6 matrix in global coordinates as the effect of the ith plane in 
the mechanical behaviour of a typical point. Any kind of instabilities, softening, ill-conditioning, 
limitation in tensile/shear strength of the ith plane can be included in this matrix. 
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TCTC                                                           (26) 

Therefore, the global compliance matrix based on multi-plane numerical integration is found as follows: 
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13
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8                                                           (27) 

   
7. VERIFICATION OF MODEL RESULTS 

 
The test result on Toyoura sand, whose specific gravity is 2.66 g/cm3, was employed for the verification of 
the proposed model. The maximum void ratio emax of this sand was 0.977 and emin was 0.597. The grain 
size distribution curve is shown in Fig. 6. 

The mean grain size D50 was 0.20 mm, and the uniformity coefficient was 1.24. Linear variations of 
eph and ef versus (P/Pa)ξ, as presented by Li et al., are adopted [31].    
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Fig. 5. The grain size of Toyoura sand  
 

8. IDENTIFICATION OF PARAMETERS 
 
For an axe-symmetry anisotropy of soil that is more practical, two triaxial standard compression tests upon 
the horizontal and vertical bedding plane is enough to identify A, B, and C. The strength and dilation 
parameters of the multi-plane model are G0, ν, φfi, ηci, eΓ , Cλ ,ξ , d0, h1 , h2 and n. The first two 
parameters correspond to the elastic behaviour of the soil skeleton. φfi,is obtained from the built up 
strength ellipsoid on the corresponding bedding plane for 13 planes as presented in [7]. 

The ratio of ηci/tan(ϕi) is assumed initially the same for all directions. This ratio is obtained during the 
calibration of stress-strain of triaxial standard tests. This parameter is assumed to vary after exceeding the 
phase transformation line to exceed one. This variation means that the strength ellipsoid approaches the 
sphere at failure condition. Certainly, there should be a continuous reform of this ellipsoid due to the 
rotation of principal effective stress axes, however, to ease the solution, this variation can be neglected up 
to the steady state line. Accordingly, this reform has been considered during post-liquefaction.  

Starting from the hydrostatic initial stress condition and no plastic strain history, these parameters, 
except for friction angles, are assumed to be the same for all planes and are found by numerical calibration 
with the results of the stated two triaxial compression tests.   

The parameters found for Toyoura sand by calibration are: G0=245 MPa., ν′=0.3, ηci=0.6, 
eΓ=0.934, Cλ =0.019,ξ  =0.7, d0=4.6, m=5.4, h1=3.15, h2 =3.55 and n=1.1. (tan(φf))max=0.8665, 
and (tan(φf))min =0.7602. A=0.8563, B=C=0.7752, [7]. 

To present the ability of the proposed model, the test results conducted by Verdugo & Ishihara [32] 
on Toyoura sand are produced by the model. The obtained model results through the use of calculated 
parameters are presented as the comparison of stress deviator versus effective mean stress (stress paths), 
and stress deviator versus axial strain.  

Figure 7a, b, shows the comparison stress paths of the model result with tests for dense Toyoura sand 
as stress deviator versus different initial mean stress. Also, the comparison of stress deviator versus axial 
strains are shown in Fig. 8a, b. The comparison of the stress path for loose Toyoura sand are shown in Fig. 
9a, b. The comparison of stress deviator versus axial strain for loose sand is shown in Fig. 10a, b. 
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Fig. 6. Undrained stress path and stress-strain on a plane 

 

    
Fig. 7. Comparison of experimental with model results (e=0.735, Dr=63.7%), 

a) test results,  b) model results 
 

     
 

Fig. 8. Comparison of experimental with model results (different initial mean stress), 
a) test results,  b) model results 
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Fig. 9. Comparison of experimental with model results(e=0.907, Dr=18.5%), 

 a) test results,  b) model results 
 

      
Fig. 10. Comparison of experimental with model results (e=0.907, Dr=18.5%, and  

different initial mean stress), a) test results,  b) model results 
 

To show the capability of the proposed model in predicting the effects of bedding plane and changes in the 
orientation of principal stress axes, the hollow cylindrical test results presented by Nakata, et al. [33] were 
produced and compared with the test results. Figure 11-a to 11-f show like to like comparisons 
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Fig. 11. a1(Nakata, et al. [34])                                           Fig. 11. a2 (Model results) 
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Fig. 11. b1(Nakata, et al. [34])                                       Fig. 11. b2 (Model results) 
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Fig. 11. c1(Nakata, et al. [33])                                              Fig. 11. c2 (Model results) 
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Fig. 11. d1(Nakata, et al. [34])                                    Fig. 11. d2 (Model results) 

 
 



S. A. Sadrnejad 
 

Iranian Journal of Science & Technology, Volume 31, Number B2                                                                              April 2007 

138 

       

Toyoura sand(Dr=30%), p=100kPa, b=0.5
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Fig. 11. e1(Nakata, et al. [34])                                      Fig. 11. e2 (Model results) 
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Fig. 11. f1 (Nakata, et al. [34])                                                   Fig. 11. f2 (Model results) 

 
These comparisons show that the model has predicted tally results as the effects of principal stress 

axes orientation on the mechanical behaviour of Toyoura sand. 
An important feature is that the developed model sets plasticity formulation for smooth transitions 

between the elastic and plastic states, making it advantageous in cyclic simulations.  Hysteresis loops and 
plastic strain increments for successive cycles can be described in a relatively simple manner.  The 
concept allows formulation which may be important to simulate variations in soil skeleton behavior during 
cyclic loading. An undrained cyclic triaxial compression test reported by Towhata and Ishihara [34] was 
predicted and well compared with the test in Fig. 12. The stress path of six cycles of 
loadig/unloading/reloading and the corresponding variation of shear stress vs. shear strain led to the zero 
effective mean stress obtained by the proposed model and are plotted and located in front of the above 
experimental results. This general comparison shows that the model results are similar to the experiment 
with a minor and very little diversion. Consequently, the proposed model can be used to predict the cyclic 
behavior of sand. 
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Fig. 12. The comparison of Undrained cyclic triaxial compression test reported  
by Towhata and Ishihara [34] with model results 

 
9. CONCLUSION 

 
A multi-plane based model incorporating the steady/critical state concept was developed for the undrained 
behaviour of sand for post liquefaction. The main feature of this model is the use of a pressure dependent 
peak stress ratio parameter that approaches the steady/critical state value as the steady/critical state normal 
stress is approached. The model was shown to be capable of accurately predicting the undrained behaviour 
of sand over a wide stress region. 

A method to solve anisotropy of soil as the effects of natural micro-fabric and also due to inclination 
of direction of the applied load with respect to the bedding plane is presented and verified. This method is 
simple, and based on the minimum energy level in natural law. Despite the directional effect on soil 
strength, the presented distribution of strength by the rotation of the bedding plane is of a unique form 
through the material. This aspect simplifies the use of the presented method to find strength ellipsoid 
parameters.  

A micro-plane numerical algorithm is also presented for a better anticipation of load inclination 
effects through the material. In this way, the directional information and effects of applied load orientation 
on mechanical behaviour of material are addressed and considered. Further than the possibility of 
predicting inherent anisotropy, this rational way facilitates the model to predict the effects of stress/strain 
principal axes rotation, induced anisotropy and a potential to solve the anisotropy of the material through 
defining different mechanical behaviour on different orientation. This is achieved by the use of a generally 
simplified, applicable, effective, and easily understandable relation between micro and macro scales. 
These relations demonstrate an easy way to handle any heterogeneous material property as well as 
mechanical behaviour of materials. 
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This model is able to solve a three dimensions plasticity problem by a rather simple theory based on the 
phenomenological description of two dimensions plastic deformation and kinematics hardening of 
materials. This is actually achieved in such a way that the application of some difficult tasks such as 
induced and inherent anisotropy and the rotation of principal stress and strain axes where there may not be 
co-axiality among them during plastic flow, can be predictable. Accordingly, the sampling plane 
constitutive formulations provide a convenient means to classify loading events, generate history rules, 
and formulate independent evolution rules for local variables.  
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