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Abstract– In this study, a certain characteristic of neural networks called Self Organizing Feature 
Maps (SOFM’s) was applied to pollution source identification in the Kor and Sivand Rivers 
located in Fars Province, Iran. Wastewater quality data from significant industrial pollution 
sources to these rivers (mainly factories located upstream) were given. Observed sets of water 
quality data in sampling stations, downstream from the pollution sources, were utilized to identify 
the most probable pollution source that may have contributed to pollution in these rivers. With the 
aid of partial semantic maps generated by SOFM’s, different patterns with different likelihoods 
were recognized in the pollution data. Certain patterns matched that of the pollution sources very 
closely. In other words, the fingerprints of all pollution sources (which were studied) were 
identified in the pollution data. Therefore, it is possible to use the maps as an aid to the 
management and decision support system of these rivers.           
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1. INTRODUCTION 
 

River hydrodynamics, pollution transformation, and relevant processes involved are affected by so many 
factors that the conventional approach to pollution source identification in rivers is almost impractical [1]. 
In particular, water quality in rivers is affected by multiple sources that vary constantly in extent and 
strength due to the weather, season, and level of human activity. Usually, such cases are too complicated 
to be completely defined by governing equations or other deterministic models. Even if such equations 
and methods could be derived, their solutions are too expensive in time and computational effort and 
prove to be of less importance in providing useful information. Considering all the variables and myriad 
conditions that affect the water quality and transport phenomena in river systems, it becomes difficult, if 
not impossible, to make precise and accurate predictions. The stochastic nature of rivers makes them more 
suitable for the application of artificial intelligence methods. As Professor Lotfi Zadeh, one of the pioneers 
of the fuzzy set theory has pointed out “as the complexity of the system increases, our ability to make 
precise and significant statements about the behavior of the system diminishes until a threshold is reached, 
beyond which precision and significance become mutually exclusive characteristics” [1]. To cope with 
this inherent complexity of such a system that results in extremely erratic and interdependent multiple 
input variables, Artificial Neural Networks (ANN’s) are techniques that are used extensively [1]. 

ANN’s mimic the functionalities of the human brain. Although they are very naïve in comparison to 
the brain’s capability, in many cases they prove superior compared to most other tools. ANN’s are mainly 
used as black box models to find the relationship between output and input data. Traditional applications 
of ANN’s are in a variety of fields such as signal processing, adaptive filter design, system identification, 
business, medicine, and speech recognition and production [2]. 
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One of the more recent applications of ANN’s, widely used for data analysis and clustering, is Self 
Organizing Feature Maps (SOFM’s). In many engineering problems one may not have any prior 
knowledge of the system. Furthermore, if the input variables of the system are multidimensional, data 
exploration with traditional techniques like Principal Component Analysis, Empirical Orthogonal 
Functions, and Correspondence Analysis becomes very difficult [3]. SOFM’s are well qualified tools for 
such purposes because they organize imprecise and multivariate data into useful associative clusters. 
These clusters are formed without any given rule and self-train themselves to represent the given data set 
or input space. Unlike other ANN’s, which are mostly used for function approximation, SOFM’s are 
qualitative in nature, and in every problem they may be interpreted according to the domain knowledge of 
that problem. The result of a trained SOFM is a topology-preserved representation of the input space with 
a user controlled error that controls the overall accuracy of the network. Every cluster in the resulting 
feature maps may be named accordingly to represent the species of the interest. Such a map is called a 
partial semantic map and may be regarded as a condensed depiction of the inputs [1]. 

Researchers have applied SOFM’s to the problem of pollution source identification in rivers in recent 
years. The water quality and its sufficient support for the aquatic ecology of the specific regions have been 
studied. The application of the SOFM model proved to be useful; the patterns of the pollution and water 
quality have been extracted from the models appropriately. In this study, SOFM’s were applied to 
pollution source identification in the Kor and Sivand Rivers located in Fars Province, Iran. Resulting maps 
reveal the state of water quality and pollution patterns in these rivers. They may be used as an aid to the 
management and decision support system of the rivers. 
 

2. THEORY 
 
An SOFM network is composed of two layers; an input layer with an arbitrary dimension and a clustering 
layer which manifests the output layer (Fig. 1). Layers form a lattice that is usually one or two-
dimensional, with neurons placed at the nodes of the lattice. Neurons are selectively tuned to particular 
input patterns or classes of input patterns in the course of the competitive learning process. Locations of 
the neurons are also tuned with respect to each other, so that a meaningful coordinate system for different 
patterns is created for the input space. Therefore, each neuron in the lattice is fully connected to all source 
nodes in the input layer. This network represents a feed forward structure with a single computational 
layer consisting of neurons arranged in rows and columns [4].  
 

 
Fig. 1. Structure of an SOFM network 
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SOFM may be characterized by the formation of a topographic map of input patterns in which the 
spatial locations or coordinates of the neurons in the lattice are indicative of intrinsic statistical features 
contained in the input patterns. The input data in an SOFM may consist of K vectors in an N-dimensional 
space. Every vector corresponds to an individual dataset in the input space which has N properties of 
interest. Therefore, every component of the input vector reflects a property of interest in the input data. 
There is no limit to the number of properties or the number of input vectors. However, they are usually 
fixed for every specific SOFM.  

The principal goal of an SOFM is to perform an adaptive transformation of the incoming signal of an 
arbitrary dimension into a one or two-dimensional discrete map in a topologically ordered fashion. In 
other words, SOFM’s are used to discover clusters, or similar patterns, in data sets without supervision. 
They try to find the structure of the data set by iteratively exploring the data many times in a competitive 
learning process. The topology of the network is fully connected so that each input signal completely 
affects all neurons in the network. The output layer is a discrete map depicting the clusters in a topology 
preserving fashion [5].  

In order to have a measure of similarity in an SOFM network, a “similarity function” is defined which 
measures the distance between the weight vector wm and the input vector xk. Several options are available 
for a definition of the distance between the two vectors, which in turn, will have an important effect on the 
topology of the resulting map. The most common definition is the dot product of the two vectors that are 
being compared, which is often called the Euclidean distance. The dot product of two vectors becomes the 
largest when the two vectors are in the same direction or “most similar” to one another. Non-Euclidean 
distance measures like the Minkonvsky distance have also been used in measurement of similarity in 
SOFM networks [6]. 
 

3. TRAINING PROCESS OF AN SOFM 
 
Training an SOFM network implies adjusting its weights such that the network performs the desired task 
optimally. The process starts with exploring the data set and looking for any pattern (cluster) there. Then 
the network adapts to the input patterns iteratively by adjusting the weights to reflect the topology of the 
input space. The training process of an SOFM is an unsupervised one since there are no targets associated 
with the input data. 

There are two main parameters involved in the training process. One is the learning rate α, which 
describes the rate of change of the weights for every input. This parameter changes from its initial value to 
a small constant value during the course of training and remains constant for the rest of the iterations. 
Another parameter affecting the performance of an SOFM is the neighborhood distance; R. It encloses the 
neurons that can be activated within the vicinity of the wining neuron or the neuron that best matches a 
particular input data. Just like the learning rate, neighborhood distance shrinks to a constant value during 
the course of training. This value may include only the wining neuron after some iterations.  

The training process of an SOFM network is initialized by setting the learning rate and neighborhood 
distance for the network. The initial weights are usually set to small random numbers. Then for every 
input vector in the input space, its distance to each neuron is computed and the winning neuron, which is 
the neuron with the minimum distance, is chosen. The weight of every neuron within the neighborhood 
distance of the wining neuron is then updated according to the learning rule:  
 

w(new) = w(old) + α[x-w(old)] 
 
in which w is the weight vector and x is the input vector. By updating the weights for all vectors in the 
input space, a single iteration is completed. The learning rate and neighborhood distance are reduced and 
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the second iteration is initialized, and the iterations are continued until the change in the weights of the 
network becomes negligible. Due to the random initialization of the weights, every run of an SOFM will 
be different from the previous one, but the relative position of every cluster would be set as the parameters 
convergence [7, 8]. One recent application includes forecasting salinity in a river demonstrating the 
outstanding features of the SOFMs with regard to PCA and Genetic algorithms [6]. The topological 
ordering of the data sets by SOFMs are used extensively in hydrology such as combining the remote 
sensing and neural network to find the relationship between data and topological ordering of the data sets 
[7].  
 

4. POLLUTION IN KOR AND SIVAND RIVERS 
 
Kor and Sivand are two important rivers running in the Tashk and Bakhtegan lakes’ basin. Kor is a 
permanent river, ~280 km long, running from northwest of Fars province along the Zagross Mountains to 
the east of the province ending up at the Bakhtegan and Tashk Lakes. It has two main reaches in the basin; 
Kor Olya, from its highland origins to the Khan bridge where the Sivand joins it, and Kor Sofla from the 
Khan bridge to the Tashk lake. Kor Sofla, with an average annual flow of ~30 m3/s at the bridge, hosts 
several dykes such as Amir, Tilakan, Mowan, and FaizAbad, where water is diverted for irrigation 
purposes. The sampling stations used in this study were all located on the Kor Sofla (Figure 2). Sivand, a 
~170 km long river, originates from north of Fars and joins the Kor at the Khan Bridge. The lakes basin 
has an area of 28234 km2 spanning from 51o 44′ to 54 o 30′ eastern longitude and from 29 o 7′ to 31 o 15′ 
northern latitude. Bakhtegan Lake, receiving an annual average flow of ~ 19 m3/s, is one of the most 
important wetlands in southern Iran, being registered as a natural habitat for certain endangered species in 
the country [9]. Figure 2 shows a schematic of the study area in northern Fars, Iran, where the two rivers 
flow and pollution sources and sampling stations are located. 
 

  
Fig. 2. A schematic of the study area in northern Fars, Iran, where pollution sources  

and sampling stations are located along Kor and Sivand rivers 
 

Water quality in the Kor and Sivand rivers, being used for drinking, agricultural, domestic and 
industrial purposes, is essential to the development of the area. Measurements of the water quality were 
made on a regular basis covering a total time span of three years (from 1997 to 2000) and the data were 
regarded as batch. A summary of 83 sets of measured water quality data in sampling stations is given in 
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Table 1. Pollution sources for these rivers include discharges from many factories located upstream of the 
rivers such as a Meat Factory (MF), a Sugar Factory (SF), Petrochemical Facilities (PF), a Leather 
Factory (LF), 1 & 1 Factory, Azemayesh Factory (AF), and a Flour Factory (FF). 1 & 1 and Azemayesh 
are food processing and appliances manufacturing factories, respectively. Wastewater quality patterns 
(source fingerprints) from these pollution sources to the rivers were known. Non-metal pollutants in these 
sources include nitrate, phosphate, chloride, and other pollutants mentioned in Table 2. The data in this 
table is the average of many measurements on the discharge quality from the mentioned factories from 
1990 to 1994.  The major sources of heavy metals such as lead in the rivers are PF, LF, and AF. While 
heavy metals were not crucial pollutants in the rivers before 1995, their concentration has increased in 
amount ever since and they are one of the major concerns in the Kor and Sivand rivers nowadays. 
Investigations in this paper focused on the sources that had been considered major pollution sources by 
the Environmental Protection Agency of Fars Province, were studied more extensively before, and their 
finger prints were available [9,10]. Other pollution sources such as municipal wastewater and drainage 
from agricultural activities may also exist which were not considered in this study. However, lack of 
knowledge about some possible sources will not jeopardize identification of the sources where their 
finger prints are known. 
 

Table 1. A summary of water quality data in Kor and Sivand rivers measured at sampling stations 
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Table 2. Wastewater quality data from pollution sources to Kor and Sivand rivers [13] 
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COD (mg/L) 2666 5300 456 921 100 284 196 
Cl- (mg/L) 14.3 3000 46 586.6 390 0 820 
Alkalinity (mg/L) 175 0 0 0 0 315 0 
NH4+ (mg/L) 16.8 0 0.1 13.4 0 0 69.4 
NH3 (mg/L) 3.9 0 0 7.62 0 0 0.1 
NO3- (mg/L) 5 0 1.4 0 0.5 0 7 
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5. PROCEDURE 
 
An SOFM network was constructed having a feed forward structure with a single computational layer. 
The network was applied to pollution source identification in the Kor and Sivand Rivers. Since there was 
no initial guess as to the number of clusters present in the data, different map sizes were considered. The 
criterion used to evaluate the maps were visual inspection, quantization error, and ability of the map to 
distinguish different pollution patterns. The quality of the maps was also measured by calculating the 
difference between all patterns in a cluster with the cluster representatives all over the map [11].  

While wastewater quality data from significant industrial sources to these rivers (mainly factories 
located upstream) were given, observed sets of water quality data in sampling stations downstream from 
the pollution sources were utilized to identify the most probable pollution source that may have 
contributed to pollution in these rivers. A clustering procedure was performed with the aims of 1) 
identifying and extracting the existing pollution templates or patterns from the observed pollution records 
(input data) in the rivers, and 2) labeling the templates according to the best matching known source 
fingerprints shown in Table 2.  

A U-matrix was generated to determine how distinguishable the clusters were in the cluster map. 
This colored map showed the goodness of the clustering procedure by the intense contrast between 
neighboring clusters. A higher contrast between two neighboring clusters indicates better differentiation 
between the two clusters. As the map size increased, the overall differentiation between clusters 
improved. However, the drawback was that large maps were not useful, as most of the cells remained 
empty. It is worth mentioning that the process of map size increase may not be reversed because 
unnecessary clusters, other than the known ones, will show up on the map. Finally, a density and partial 
semantic map was created and patterns were labeled with the known source fingerprints. Different 
likelihoods were also associated with each recognized pattern in the pollution data [12]. 
 

6. RESULTS 
 
The optimum size and shape of the cluster map found for the data was a 7 by 7 hexagonal grid. The 
resolution of this map is high enough to differentiate clusters in the pollution data. Figure 3 shows the 
cluster map for the data. Each histogram on the map is a qualitative depiction of the concentration of 
different pollutants present alongside the river. In other words, each plot represents a unique cluster of 
pollution identified in the river monitoring data. As shown by histograms on the figure, 49 different 
patterns (clusters) were recognized for the data. Clusters located on the right and lower part of the map 
showed many pollutants, while other clusters showed only few pollutants.  
 
 
 

 

 

 

 

 

 
 

Fig. 3. Cluster map and templates for pollution data 
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Figure 4, the labeled U-matrix shows how well the recognized clusters in the data and the sources 
fingerprints are differentiable. As shown on the figure, a good color intensity contrast exists between 
groups of clusters, meaning that such groups are differentiable with a higher confidence. Such groups exist 
mainly in the pollution data and represent different clusters occurring in the data set naturally. The clusters 
depicting sources fingerprints were labeled accordingly. They showed a differentiable cluster in the case 
of the Leather Factory (LF) on the lower left corner of the matrix. However, groups of differentiable 
clusters in the data appeared mainly in the upper part of the matrix, while sources fingerprints were 
generally less differentiable and compressed in the lower part of the matrix. It was postulated that different 
pollutants in source fingerprints were not strictly preserved as pollutants were discharged into the rivers 
and transported downstream to the sampling stations.  

 

  
Fig. 4. Labeled U-matrix for pollution data 

 
Figure 5 shows the density and partial semantic map for the pollution data. The relative frequency of 

samples being located in each cluster (its likelihood) is represented by the area of the white spot in that 
cluster. As shown, with the aid of the partial semantic map generated by SOFM’s, many different patterns 
with different likelihoods were recognized in the pollution data. Certain patterns matched that of the 
pollution sources very closely. In other words, the finger prints of all pollution sources (which were 
studied) were identified in the pollution data. Therefore, it is possible to use the maps as an aid to the 
management and decision support system of these rivers. 

 

 
Fig. 5. Density and partial semantic maps for pollution data 
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7. CONCLUSIONS 
 
SOFM’s proved to be an effective inexpensive tool in data set clustering and conceptualization. With the 
aid of cluster maps, U-matrix, and partial semantic maps generated by SOFM’s, clusters (patterns) were 
identified in the pollution data in the Kor and Sivand rivers. Clusters were then associated with given 
source fingerprints that may have contributed to them by different likelihoods. The topology preserving 
capability of SOFM’s may be utilized to identify the most probable pollution source in rivers. The 
flexibility of the SOFMs makes them more desirable in developing parsimonious models of a complicated 
process such as pollution determination with regard to conventional methods and models discussed 
extensively in [14].  
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