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Abstract– The implementation of boundary conditions in sub-critical and supercritical flow is 
quite different when using characteristics leading to programming difficulties with the associated 
numerical schemes. For supercritical flow, the de Saint Venant equations require two upstream 
boundary conditions and no downstream condition, whereas sub-critical flow requires one 
upstream and one downstream condition. The literature contains many approaches to 
accommodate both super- and sub-critical flows. Reducing or suppressing the convective term is 
one of the common methods which allows the same numerical scheme to be used for both regimes. 
In this paper, the impact of suppressing the convective term on the solution is investigated using 
the Method of Characteristics (MOC). A set of numerical experiments are carried out for this 
purpose using the commercial software MIKE11, and the results are compared and contrasted with 
MOC. Results show that significant changes in computed water depths occur in some situations by 
suppressing the convective term. In conclusion, in some cases the solution algorithm is 
significantly affected by this approximation. Also, since recent advances in numerical modeling of 
trans-critical flow are superior, this approximation should gradually be removed from the 
numerical simulation of open channel flow.           
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1. INTRODUCTION 
 

The Saint Venant equations are widely used for the numerical simulation of free surface flow in open 
channels and rivers. These equations, which can be obtained by integrating the Navier-Stokes equations 
over the cross section, simulate unsteady spatially varied flow in non-prismatic open channels. 

In natural streams or artificial channels, there are many occasions where trans-critical flow regime 
occurs. Trans-critical flow is the term that describes the existence of supercritical and sub-critical flows 
within the considered domain under unsteady conditions. Trans-critical flow occurs frequently in 
irrigation canals and other man-made structures found in drainage networks. Such flow is most often 
encountered on steep slopes and can arise in naturally formed rivers in mountainous areas.  

It can easily be shown that in supercritical flow, unlike sub-critical flow, the state of flow is not 
influenced by downstream conditions and so only upstream boundary conditions are implemented to 
simulate these flows, while in sub-critical flow the state of flow is affected by both upstream and 
downstream conditions. This essential difference between sub-critical and supercritical flows causes 
programming difficulties and a higher computational cost in modeling trans-critical flow (where the flow 
regime changes from sub-critical to supercritical and vice versa). In general, most unsteady flow solution 
algorithms become unstable when the flow passes through critical depth. Therefore, many efforts have 
been made to deal with numerical simulation of this type of flow in open channels [1-4]. 
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The convective term in the momentum equation can significantly alter the manner in which boundary 
conditions are applied [5]. Indeed, by eliminating and/or gradually reducing this term (also called 
suppression of convective term), supercritical flow behaves numerically like subcritical flow in terms of 
boundary conditions. Using this technique, programming difficulties could be overcome [6, 7]. The 
consequences of the suppression of the convective term have only very recently received attention in 
hydraulic literature [8, 9]. Kutija investigated the impact of eliminating and/or gradually reducing the 
convective terms for various kinds of momentum equations in a channel where supercritical flow occurs 
over the entire channel length [8]. She concluded that the full reduction of the convective term should be 
avoided and it is better to reduce the convective term partially. She did not investigate the impact of such 
suppression on subsequent flow regime where supercritical flow changes to sub-critical flow and vice 
versa (i.e., trans-critical flow). In order to solve the stability problem for a trans-critical flow regime 
system, Fread et al. [1] took a totally different viewpoint and developed a methodology called the “Local 
Partial Inertia” (LPI) technique. The LPI method has been adapted to HEC-RAS as an option for solving 
mixed flow regime problems when using the unsteady flow analysis portion of HEC-RAS. This 
methodology applies a reduction factor to the two inertia terms in the momentum equation as the Froude 
number goes towards 1.0. Some efforts have been made to find numerical schemes for trans-critical flow 
without suppressing the convective term. A new method called NewC is presented for the simulation of 
trans-critical flow without requiring any changes to the governing equations [9]. 

In this paper, the impact of the convective term suppression on the solution of the Saint-Venant 
equations for the case of trans-critical flow will be investigated and highlighted. A hypothetical channel is 
used for comparison purposes, the solution of which is available using Preissmann’s four-point implicit 
scheme [10]. At first, the complete form of the Saint-Venant equations (fully dynamic) is solved using the 
Method of Characteristics (MOC). Many other numerical methods could also be used for this purpose, 
however, the method of characteristics was used as it still deserves special attention and understanding for 
the following reasons: First of all, the close relationship between physical and mathematical properties 
makes this method a basic concept and tool in analyzing the complex problem of unsteady trans-critical 
flow regime. Also, this method is generally considered to be more accurate than other methods and is 
sometimes used to provide a benchmark for comparisons. Furthermore, it seems to handle rapid changing 
flows more effectively than other methods [11]. Then, numerical results obtained by MOC are compared 
with MIKE11 results which incorporate convective term suppression. 
 

2. THE ROLE OF CONVECTIVE TERM ON BOUNDARY  
CONDITIONS IN SAINT-VENANT EQUATIONS 

 
In writing the Saint-Venant equations there are two possible alternatives for the inclusion of kinematic 
properties (e.g., discharge or velocity) and three for geometric properties (e.g., depth, flow area and stage). 
Hence, Saint-Venant equations can be casted in six different forms in terms of the state variables involved. 
These forms, although mathematically equivalent, have different numerical characteristics. Lai et al. [10] 
showed that the choice of state variables is the most important factor affecting how well the equations 
conserve mass. In this paper, discharge and flow area are taken as state variables. Using these variables, 
the Saint Venant equations become [12]: 
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where A  denotes flow area,  Q= discharge, and h=depth of water with respect to the channel bottom (i.e., 
channel thalweg), q=lateral inflow, u'=x-component of velocity of lateral flow, 0S =channel bed slope and 

fS  = friction slope. Furthermore, in the momentum equation, )(
2

A
Q

x∂
∂  is the convective term and β is a 

factor considered to evaluate the impact of convective term suppression. Upon ignoring the lateral inflow, 
expanding the convective term and expressing 

x
h
∂
∂  in terms of A, Saint Venant equations become: 
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where T denotes top width. Assuming the prismatic channel, the last term in the momentum equation can 
be ignored. The friction slope evaluated using the Manning equation is: 
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where n  is the Manning coefficient and P is the wetted perimeter of the channel cross section. In order to 
investigate the effect of the convective term on the boundary conditions and direction of characteristic 
curves, the method of characteristics may be applied. By multiplying Eq. (1) by an unknown multiplier λ, 
adding it to Eq. (2) and rearranging the terms, the result is (assuming prismatic channel): 
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To transform the above partial differential equation into the corresponding ordinary differential equations 
(characteristics equations), λ must satisfy the following two equations: 
__ 
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And characteristic equations become: 
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Equation (6) denotes the slope of characteristic curves. In the typical form of the Saint Venant 

equations, β = 1, i.e., TgA
A
Q

dt
dx /±= . Hence, the relative magnitude of flow velocity with respect to wave 

celerity determines the slope of the characteristics, which may be positive, zero or negative. Furthermore, 
based on the slope of the characteristic curves, three different states of fluid motion can be distinguished. 
For supercritical flow, the velocity of fluid (

A
Q ) is greater than wave celerity ( TgA / ). In other words, 

both characteristics are positive. Therefore, the numerical value of state variables at any point P in the 
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computational domain is affected by the situations upstream, and downstream conditions have no impact 
on flow regime. For critical flow condition, wave celerity is equal to flow velocity, resulting in a vertical 
slope for one characteristic line. Hence, negative characteristics become a vertical line for critical flow 
regime and state at a point in the domain is not influenced by the downstream flow condition. For sub-
critical flow, the two characteristics have opposite signs and the state at a point is dependent on both 
downstream and upstream conditions [see Fig. 1]. In this figure, P corresponds to the intersection of the 
two characteristics, L refers to the intersection of the positive characteristic and previous time line, while 
R corresponds to the intersection of the negative characteristic and previous  time line. 

 

 

 

 

 

 

 

 

Fig. 1. Characteristics for sub-critical, critical and supercritical flow 
 

It can easily be shown that the factor β which suppresses the convective term in the momentum 
equation can effectively control the slope of the characteristic curves, and hence, the required boundary 
conditions for supercritical flow. For example, by replacing β=0 (i.e., full reduction of the convective 
term) in Eq. (6), characteristics become: TgA

dt
dx /±= , which always have opposite signs independent of 

the flow regime. Another choice of β may gradually reduce the convective term. As an example, by taking 
b

nF/1=β  [where b is an exponent and Fn is Froude number] and replacing it in Eq. (6), the slope of 
characteristic curves after some mathematical  manipulations becomes 
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Equation (9) clearly shows that for all values of b greater than 2, the terms inside brackets have 

opposite signs for supercritical flow. Indeed, by suppressing the convective term in the momentum 
equation, supercritical flow behaves like sub-critical flow in terms of the required boundary conditions. 
The essential difference between sub-critical and supercritical flow in terms of boundary conditions leads 
to greater complexity and more computational effort. Accordingly, taking advantage of the concept of the 
suppression of the convective term, some prefer to use the same numerical scheme for both sub-critical 
and supercritical flow. In the next part of this paper, the effect of this simplification is investigated via 
numerical experiments. 
 

3. NUMERICAL EXPERIMENTS 
 
Figure 2 shows the hypothetical channel that is used for conducting the numerical experiments. The 
channel is divided into three different reaches. Reach one is considered for supercritical flow and reach 
three for sub-critical flow. Although slopes of the channel in reach one and three are equal, significant 
differences between frictional resistances leads to different flow regimes in two reaches. A small part of 
the channel, namely reach two, is designated for transition from supercritical to sub-critical flow. Flow 
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discontinuity occurs as hydraulic jump in this reach. It should be noted that reach two is only considered 
for a change of the flow regime, and does not actually exist in the computational domain [10]. The channel 
has a uniform rectangular cross section having a 6 m width and a total length of 2000 m. It should be 
noted that this hypothetical channel was originally used by Lai et al. [10], having the advantage that in 
part of the spatial domain, the flow regime is supercritical (i.e., reach 1), followed by a sub-critical 
condition in reach 3. Furthermore, the finite difference solution of the flow is also available for 
comparison purposes [10]. The trust of this paper is to investigate the impact of convective term 
suppression on subsequent sub-critical flow downstream. 
 

 

 

 

 

 

 

 

 
 

Fig. 2. Hypothetical channel used for numerical experiment, After Lai et al. [10] 
 
The upstream of the channel is connected to a reservoir with a time varying water stage, imposing two 

boundary conditions in this section, which are the discharge area relationship and flow depth as a function 
of time (Flow area is simply A(0, t) = bh(0, t)) [Fig. 3]. Since the bottom slope in reach 1 is considered to 
be steep, the flow depth at the channel entrance will be critical. This critical depth could be converted to a 
discharge-flow area relationship easily by combining the energy equation and critical depth condition. 
Also, there is a drop at the end of the channel which similarly imposes a discharge–flow area relationship 
at the downstream point. Finally, the computed discharge as a function of time at the end of reach one is 
used as the upstream boundary condition for reach three. 
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Fig. 3. Time series of flow depth versus time–Reservoir entrance 

 

Reach 1 
Length=1000m 
S=0.0064 
n=.01200 
Supercritical Zone  

Reach 3 
Length=1000m 
S=0.0064 
n=0.03416 
Subcritical Zone 

Reach 2 
S=0.0 
Transition Zone 
 

Reservoir with 
fluctuating water 
surface 



M. J. Abedini / M. R. Hashemi 
 

Iranian Journal of Science & Technology, Volume 30, Number B1                                                                          February 2006 

90

a) Method of characteristics as benchmark 
 

Returning to Eqs. (7) and (8), the method of characteristics with the full inclusion of the convective 
term is used for the computation of the water surface profile and the impact assessment in the channel. 
This result will be used as a benchmark for the evaluation of the suppression of the convective term being 
implemented in a commercial program called MIKE11. Assuming β=1 (i.e., no reduction in convective 
term), Eq. (7) may be rewritten as: 
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There are two common methods for discretizing the above equations, namely Grid of Characteristics (GC) 
and Specified-Time-Interval (STI) scheme [12]. Incorporating GC and using the second-order approximation 
for total derivatives gives [See Fig. 1 for location of points L, P and R.]: 
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The GC scheme marches the solution ahead with the solved value tp. The detail of this procedure for 
computing the values at the advanced time points is explained elsewhere [12, 13]. Traces of characteristic 
lines in the x-t plane for supercritical flow regime (about 60,000 points for this numerical experiment) is 
shown in Fig. 4. 

It should be noted that the time interval must be computed as a function of the space interval to ensure 
the stability of the solution. This may be achieved by satisfying the Courant number, i.e., setting the ratio 
of wave celerity to grid celerity equal to unity. Another useful method is to choose the first time interval 
so that the negative characteristic lines originating from x-axis intersects the time axis [11]. By 
implementing the above method, the discharge and flow area are computed in the channel. However, flow 
and depth [For the sake of comparison with MIKE11 results, depth (instead of flow area) is used in these 
figures as function of time are shown at selected locations of reach one and reach three in Figs. 5 and 7. 
The computed depths are similar to those obtained by Lai et al. [10] for the same numerical experiment 
and using the finite difference method. 
 
b) Comparison with result obtained by suppressing convective terms using MIKE11 
 

MIKE11 is a well-known software that has been extensively used for unsteady flow simulation in 
rivers and open channels. It solves almost the same equations as Eq. (2) and incorporates the concept of 
the suppression of the convective term. It has two options for the reduction of the convective term which 
allow the user to choose full reduction or partial reduction of the convective term [6, 14]. In this part, 
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results obtained by the method of characteristics in the hypothetical channel are compared with MIKE11 
results. As was previously noted, in the case of suppression, only two boundary conditions are required for 
the entire length of the channel, including reach 1 and reach 3. Accordingly, flow hydrograph at the start 
of reach one and the stage discharge relationship at the end of reach three are imposed as boundary 
conditions. By using this software, the flow is simulated in a hypothetical channel. Table 1 compares the 
depth and discharge solutions at peak value for various numerical schemes. A graphical representation of 
depth and discharge hydrographs can be seen in Figs. 5-8. 
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Fig. 4. Graphical representation of grid of characteristic points–Reach 1, supercritical flow 
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(a) Reach 1 at x=500 and x=1000 from the reservoir 

 
(b) Reach 3 at x=1500 and x=1800 from the reservoir  

Fig. 5. Flow depth versus time—MOC results 

 

Table 1. Comparison of results for various numerical schemes 

Distance† 
     (m) 

Maximum depth versus time 
Time (hr)  Depth (m) 

Maximum discharge versus time 
Time (hr)         Discharge (m3/s) 

500  7:06:54   1.1216‡ 
7:06:59   0.9900 

7:06:54   39.182 
7:06:52   39.200 

1000 7:07:53  1.1207 
7:08:14  1.4100 

7:06:54  39.158 
7:07:44   39.190 

1500 7:10:34   2.3027 
7:09:14  1.8400 

7:10:03   38.705 
7:08:59   39.010 

1800 7:12:21   2.2824 
7:10:14   1.8100 

7:11:33  38.581 
7:09:44  38.920  

 †Longitudinal distance is from reservoir entrance. 
 ‡ Note: For every x, the first and second row of data correspond to the MOC and MIKE11 results, respectively. 
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(a) Reach 1 at x=500 and x=1000 from the reservoir 

 
(b) Reach 3 at x=1500 and x=1800 from the reservoir   

Fig. 6. Flow depth versus time—MIKE results 
 
While the results obtained by Kutija [8] using models which were implementing the suppression of the 
convective term overestimated the water depth, the results obtained in this research partly confirmed 
previous findings, and also provided some new insights regarding the impact of such suppression on 
subsequent sub-critical flow downstream which had not been tried before. In reach 1, which is entirely 
dominated by supercritical flow, MIKE11 underestimated water depth at x=500 m by as much as 11.7%, 
and overestimated water depth at x=1000 m by as much as 25.8% compared to results obtained by MOC. 
In reach 3, which is entirely dominated by sub-critical flow, MIKE11 underestimated water depth at both 
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x=1500 m and x=1800 m sections as much as 20% compared to results obtained by MOC. As Table (1) 
clearly demonstrates, both numerical schemes simulate the timing of hydrographs (in particular, time to 
peak) quite well, implying no phase shift. The remarkable difference between depths for various numerical 
schemes is not perceivable in the case of discharge hydrographs in this study, due to a low range of 
discharge variation over the entire physical domain. Indeed, depth varies as much as 50% over the entire 
physical domain, while discharge varies only around 1.5% 
 

 
(a) Reach 1 at x=500 and x=1000 from the reservoir 

 
(b) Reach 3 at x=1500 and x=1800 from the reservoir 

Fig. 7. Discharge versus time—MOC results 
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(a) Reach 1 at x=500 and x=1000 from the reservoir 

 
(b) Reach 3 at x=1500 and x=1800 from the reservoir 

Fig. 8. Discharge versus time—MIKE results 
 

4. CONCLUSIONS 
 
The suppression or reduction of the convective term in the numerical simulation of Saint-Venant equations 
may significantly affect the results in certain circumstances and should be considered carefully in trans-
critical flow modeling while working with commercial software such as MIKE11. The salient point raised 
by this paper is the impact that convective term suppression might have on subsequent sub-critical flow 
downstream, which is the dramatic underestimation of water depth by as much as 20% in this region. 
Taking into account recent developments in the numerical modeling of supercritical and trans-critical 
flow, it may be better to gradually allow the users of professional software to have an option for the 
solution of non-reduced forms of governing equations.  
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