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Abstract– A new approach to modeling injecting domain has been developed based on changing 
permeability coefficient in a certain form in theory of consolidation. The proposed model utilizes 
the variation of the coefficient of permeability with respect to the pore fluid pressure justifying 
flow characteristic below certain hydraulic gradients and void volume changes. A proposed 
numerical solution for heterogeneity of media with regards to the permeability coefficient also 
leads the results to a better grout extension solution. The potential of the proposed model is 
evaluated in predicting the propagation of grouting material due to a single injection bore hole. 
The general comparison indicates that this approach is capable of solving the injection boundary 
value problem.           
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1. INTRODUCTION 
 

The basic phenomenon of grout propagation is described as a continuous fluid-displacement in deformable 
saturated porous media. The solution of mathematical formulation results in a highly coupled and non-
linear system requiring specific numerical techniques. The pressure–displacement formulation is 
discretized in porous media by application of the weighted residual method. The whole system is then 
integrated in time by means of a simple three level scheme for non-linear variation of parameters. The 
mechanism of grout propagation in porous media as a coupled problem is deplored by the lack of design 
technology. Among the various basic hypotheses necessary to derive a macroscopic model of flow in 
porous media, the most relevant one may be adopted as a diffusion of grout in the fluid phase.  

Modeling coupled solid deformation and fluid flow involving two or more fluid phases has been 
addressed by many researchers in petroleum or environmental engineering [1-4]. The Finite Element 
Method is widely applied to obtain the solution of multi-phase flow in a deformable porous medium. To 
obtain the fully coupled partial differential equations, the fluid should obey Darcy’s law at each time 
increment. 
 

2. HYDRODYNAMIC VARIATION OF PERMEABILITY 
 

Under transient conditions, the effective stress condition may be different in the fluid flow path and the 
surrounding porous media. If the matrix permeability is different than the flow path permeability, fluid 
pressure will be different under transient flow conditions. Therefore, if the matrix permeability is less than 
the flow path permeability, there will be a larger effective stress at the sides of the flow path than the 
matrix when fluid is withdrawn. A difference in effective stresses will also arise when the pore 
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compressibility of the domain is greater than the void compressibility of the flow path. To solve such a 
complex condition, a certain form of hydraulic conductivity change may be justified in a grout conduction 
solution procedure. 

The parameters that characterize only the conductive property of the medium are known as the 
intrinsic permeability. The hydraulic conductivities of a geological formation usually show variation 
through media. At a given point, the hydraulic conductivity depends on the direction of measurement.  

A geological formation is inherently heterogeneous if the hydraulic conductivity depends on the 
position in medium. The hydraulic conductivity depends on the coordinates x, y, z or K(x, y, z) = f(x, y, z). 
However, any anisotropy in deformation can make the homogeneous formation to a heterogeneous 
medium. Homogeneous geological formations are rather exceptional, although the concept of 
homogeneous formation is frequently used in theoretical considerations because of simplicity. 

For the case of anisotropy not coinciding the principal direction with the x, y, and z coordinate axes, 
the generalized form of Darcy’s law is employed as follows: 
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Clearly, in the most general case the hydraulic conductivity has nine components. These components 
placed in a matrix form give the hydraulic conductivity tensor. Disregarding the rotation effects in the 
imposed large deformations leads to a general form of a second order symmetric tensor that is assumed to 
have the property xyK = yxK , yzK = zyK , and zxK = xzK .  

Since the hydraulic head h is a continuous function of x, y, and z, the hydraulic gradient in an inclined 
direction of l = cosθ1,  m = cosθ2,  and n = cosθ3  is written as follows: 
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Geometrically, ∂x/∂S = cosθ1,  ∂y/∂S = cosθ2  and  ∂z/∂S = cosθ3. These equations yield the following 
relation to find conductivity on an inclined orientation θi. 
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This means that knowing Kx, Ky, and Kz through three simple permeability tests along major axes, the 
hydraulic conductivity ellipsoid is known on coordinate axes Kx, Ky, and Kz. To assess the potential of the 
current hypotheses,   the variation of conductivity coefficient along any radius is calculated as follows: 
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0xK , 0yK  and 0yK  are the measured conductivity coefficients through water pressure tests along x, y and 

z directions, respectively, uo and u  are initial and current pore pressure, a and b are material constants, b is 
always positive and dilative strains have a negative sign.  

To determine the range of values a and b with the provision of the known initial conditions, all three 
permeability values are equal to their initial values at the start of the operation, while axial strains are 
equal to zero. Therefore, the right hand side of Eq. (5) is equal to one, and this leads us to conclude that a 
and b are inter-dependent. It is found that b, for many soils, is equal to 0.5, however, it may be found 
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through the time-displacement curve of a normal odometer test, comparing experimental and Terzaghi 
solutions [5]. 

3. GOVERNING EQUATIONS 
 
The mass balance equation for the solid phase is written as follows: 
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For the fluid phase, the equation of conservation of mass is: 
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n is porosity, ρs , ρf , Vs, and Vf  are grain density, fluid phase density, and grain and fluid velocities, 
respectively. ∇ is the divergence operator. The general momentum equilibrium equation is: 
 

0=+⋅∇ gij ρσ                                                               (7) 
 
Substituting Terzaghi’s principle of effective stress in the momentum equilibrium, it results in: 
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A mixture density ρ is defined as follows: 

ρ=(1-n) ρs+n ρf                                                             (9) 
 

In the solid phase continuity equation, matrix porosity variations are expressed in terms of skeleton 
volumetric deformation and solid density variation to yield: 
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 is the derivative with respect to the solid phase. Assuming that the solid grains 

are incompressible yields ( .consts =ρ ): 
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After some manipulations, the continuity of fluid leads to the following equation: 
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In this research, the solid is assumed to be linear elastic, and the relative fluid-solid velocity is governed 
by a Darcy’s law for a fluid structured porous medium. 
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In the general immiscible phase, K=K(n,u), is the geometric intrinsic permeability assumed to be function 
of pore pressure and porosity. µf= µf(n,u,t) is the dynamic viscosity and is a function of porosity, pore 
pressure, and time. Note that in the following simulation (i.e., miscible phase), µf is assumed to be 
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constant. In general, fρ = fρ (u) is assumed as the effect of fluid compressibility, however the fluid is 
assumed to be incompressible. 
   The generalized continuity conditions lead to the following general equation of three dimensional 
consolidations: 

t
u

t
e

z
uKz

zy
uKy

yx
uKx

x
e

www ∂
∂

+
∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
∂
∂

+
∂

∂
∂
∂

+
∂

∂
∂
∂

+ β
γγγ

)()()()1(                       (14) 

 
For saturated soil the coefficient β is zero. Neglecting the effects of Kxy, Kyz and Kzx, and also in 
isotropic conditions Kx, Ky , and Kz are equal, the use of Eq. (20) leads to the following equation: 
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A three level finite difference time marching scheme employed to solve non-linear consolidation as a 

coupled solution of both equilibrium and continuity equations can be stated in matrix form as: 
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The solutions of these equations represent the values of nodal pore water pressures and deformations. 

This three level system is a typical central difference form referred to [5]. 
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The complete formulation including displacement is implemented in a fully coupled way, because 

each of the equations appears to be strongly coupled to the others and a three level scheme resolution 
procedure leads to divergence of the algorithm solution procedure. 
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4. GROUT PRESSURE DEVELOPMENT 
 
The pressure development profile reveals that the dilution process (growing transition zone) on grouting 
during the progress of the experiment is typical of a miscible constituent. The above model is applied to a 
two dimension, axe-symmetric case study of injection of a bore-hole in order to test the program under a 
simple geometrical configuration and to compare it with numerical results. In the obtained results, only 
information about the pressure distribution profile is presented.  

The result of a bore hole BH-1 carried out at the site of Abshineh Dam in Hamedan city is employed 
for the solution of the boundary value problem. The geotechnical properties of the considered layers are 
given in Table 1. Figure 1 shows general boundaries and pressure growth. A plane finite element mesh 
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regarding the adopted axe-symmetric condition of the bore hole and the surrounding affected space is 
shown in Fig. 2. Three different pressures (6, 4 and 2 bar) applied into the bore-hole and the pressure 
distribution versus distance  to the center of the bore hole at different time levels are shown in  Figure 3-a 
to 3-c. Three soil layers with different Lugeon test results as 3, 6 and 30 Lugeon are injected upon the 
same pressure of 6 bars. The different grout extension lengths obtained are plotted versus Lugeon ratios in 
Fig. 4-a, b. Accordingly, the higher Lugeon test ratio leads to the more extended grout through medium.  

Three layers of soil strata having the same Lugeon ratios as above, respectively, were injected upon 
the same conditions and 6 bar grout pressure. Later, the effective grouted area was detected through a set 
of bore holes. The approximate extended distances of grout in three layers are shown in Fig. 5.  
 

Table 1. Geotechnical parameters 
 

Young’s Modulus in saturated condition                                       9 GPa.  
 Poisson ratio                                                                                   0.3 
 Porosity                                                                                         30% 
 Internal Friction Angle                                                                  35o 
 Cohesion                                                                                      150 kPa. 
 Dry density                                                                                  2.59 gr/cm3 
 Fluid density                                                                                1.0  gr/cm3 
 Fluid viscosity                                                                              1.1*10-3 Pa.sec 
 Permeability coefficients                            4.0E-5, 8.0E-5, and 40.0E-5 cm/sec. 

 
5. CONCLUSION 

 
A simulation of an injecting experiment by a coupled flow and deformation model has been presented. 
The model utilized an elastic/elastic-plastic constitutive relationship for the behavior of soil. The transfer 
processes represented included the flow of grout simulated as pressure development associated with 
deformations of medium.   
A linear elastic law is employed for the deformation of skeleton and incompressible fluid. Upon 
exponential descending/ascending function of a permeability coefficient that is led to a diffusion of flow 
through media, the flow motion potential is not enough to force the grout to progress more. Subsequent to 
the above achievement, the validity of the proposed model was brought under scrutiny in a collection of 
experimental results with the predictions of the model. The capabilities of the model have also been 
demonstrated.  
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