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Abstract – An analysis of buckling for thick anisotropic plates subjected to arbitrary loading is 
presented. The analysis employs the complex finite strip method which utilizes complex harmonic 
functions in the longitudinal direction, a cubic polynomial in the transverse direction and a parabolic 
distribution of the transverse shear strains through the thickness of the thick plate based on the 
higher-order shear deformation theory. The method is programmed to investigate local buckling of 
square and long thick plates subjected to compression bending and shear stresses. Examples of the 
accuracy of the method with an increasing number of strips are presented. The method is then 
applied to study the local instability of thick orthotropic plates under compression and shear with 
different boundary conditions. Local instability interaction between compression and shear, and 
bending and shear in thick orthotropic plates is investigated.           
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1. INTRODUCTION 
 

With the modern trend of employing layered composites in the aerospace and automotive industries, the 
prediction of local buckling of such structures is attracting great attention from many researchers. Several 
theoretical investigations have been presented on the buckling of anisotropic plates under combined loading. 
Zurieck [1] reported a complete review of the application of the layered composites. 

The earliest general method for the local buckling of composite plates under arbitrary loading was the 
finite element method [2]. While the finite element method provides a general framework, it invariably 
results in problems which posses a large number of degrees of freedom, from which extraction of the 
buckling stress may be expensive. Vibration analysis of a thick plate with an interior cut-out using a 
quadratic element of eight nodes was investigated by Chang and Chang [3]. Local buckling of anisotropic 
plates has been studied by Noor [4], Stein [5] and Nemeth [6].  

In the analysis of thick plates, the neglect of transverse shear strains could lead to an overestimation of 
the natural frequencies and critical buckling loads because of the low transverse shear moduli [7]. This 
difficulty was overcome by using a first order shear deformation theory in which constant shear strains 
through the plate thickness are considered by Reddy and Chandrashekhara [8] and [9]. Since the first order 
shear deformation theory does not account for the parabolic variation of transverse shear strain through the 
thickness, the second shear deformation theory was proposed by Sing et al. [10].  

Although local buckling analyses can be performed for nearly any thick plate configuration using a 
general finite element method, the finite strip method is more attractive and economically feasible for 
prismatic plate assemblies because of the significant reduction in the buckling degrees of freedom [11]. 
Zeggane and Sridharan [12] presented an efficient formulation to predict the buckling behavior of long shear 
deformable laminated anistropic plates. In their analysis, the effect of shear locking was eliminated by the 
use of higher Lagrangian polynomials. Akhras et al. [13] presented a finite strip method for the vibration and 
stability analyses of anisotropic laminated composite plates according to the higher order shear deformation 
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theory. 
The spline finite strip method, in which the longitudinal trigonometric series is replaced by a linear 

combination of B3-spline functions and transverse polynomials, was employed to study buckling and 
vibration of rectangular composite laminated plates under combined loading by Daw and Wang [14] and 
[15] Wang and Daw [16]. Azhari et al. [17] studied local buckling of composite laminated plate assemblies 
using the spline finite strip method. Since in their analysis transverse shear strains were neglected, the 
critical buckling loads were overestimated. More recently, Saadatpour et al. [18] presented a numerical 
method for the analysis of general quadrilateral, moderately thick orthotropic plates having arbitrary 
boundary conditions. Their procedure is based on the application of the Rayleight-Ritz method in 
conjunction with the Reissner-Mindlin thick plate theory. 

In the present paper, the complex finite strip method developed by Plank and Wittrick [19] is extended 
for the analysis of very thick plates. The higher order shear deformation theory that accounts for a parabolic 
variation of the transverse shear strains throughout the thickness and zero transverse shear stresses on the 
surface of the plate is employed. The advantage of this approach over the formulations of Akhras et al. [13] 
is the ease with which it can handle shear. The application of the method is shown by examining a long, 
thick rectangular plate under compression and shear. 
 

2. THEORY 
 

a) General 
 

The complex finite strip method for buckling analysis of thin-walled structures was originally developed by 
Plank and Wittrick [19]. Azhari and Bradford [20] fully formulated the stiffness and stability matrices for a 
strip using bubble functions for the case of elastic buckling analysis and thin plates. In this section, the 
relevant changes to include the higher order shear deformation theory for thick-plate analysis are presented. 
Figure 1 shows the geometry and prebuckling stresses, while Fig. 2 shows the system of displacement of a 
typical complex finite strip which forms part of a thick plate assembly. 

 

 
Fig.1 Prebuckling stresses on a strip                             Fig.2 Prebuckling system of displacements on a strip 

 
b) Kinematics 

 
The strip is subjected, on its edges, to a system of perturbation forces and displacements. The vectors of 

perturbation forces p  and corresponding displacements d of the edges are defined as 
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where the second subscripts denote the edge numbers, xp , yp  and zp  are the forces in the x, y and z 
directions, respectively; m is the moment about y. u, v and w are the displacements in the x, y and z 
directions, respectively; xψ  and yψ are the rotations of the normal to the mid-plane about the y and x axes, 
respectively. The introduction of ( 1−=i ) in the vectors p and d automatically incorporates a 90 degree 
phase difference between the u and v displacements. 

The displacement field, which includes classical plate theory and accounts for the parabolic variation of 
transverse shear strain through the thickness of the plate, is assumed to be 
 

uo=Re{XJd ηie }, vo=Re{YJd ηie } and w=Re{ZJd ηie }                 (3) 
 

xψ =Re{ xR Jd ηie } and yψ =Re{ yR Jd ηie }              (4) 
 
where Re {} denotes the real part of the quantity inside the brackets; X, Y, Z, xR and yR are the interpolation 
matrices defined by Eqs. (5); J is a 16×16 matrix defined by Eq. (6) and λπη /y=  in which λ  is the 
buckling half-wavelength. It should be noted that when the boundary conditions along loaded edges are not 
simply supported, the series functions to satisfy the boundary conditions are used instead of ηie [21]. 
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in which bx /2=ξ . 
 

J=  iiiiii −−−−−− 1111111111          (6) 
 
According to the higher-order shear deformation theory, the displacements at any point ( z,,ηξ ) of a 
laminate are given by Reddy at al.  [9] 
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It should be noted that the Hermitian cubic polynomials used as the interpolation function of w in the x 

direction, guarantee inter-element continuity for the transverse displacement w and for its first derivatives 
xw ∂∂ / and yw ∂∂ / . The linear and nonlinear buckling strain vectors Lε  and  NLε  are given by 
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Using Eqs. (3), (4) and (7), the linear strain vector Lε becomes  
 

 Lε =Re (ΓJd ηie )                   (9) 
where Γ is a 5×6 matrix defined by 
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c) Stiffness equations 
 

It is assumed that the laminate is manufactured from an orthotropic layer of preimpregnated 
unidirectional fibrous composite materials. Neglecting zσ for each layer, the stress-strain relations in the 
(x,y,z) coordinate system may be written as  

LQεσ =                         (11) 
 
The components of Q for each k-th laminate is discussed in Hinton and Owen [2]. The internal virtual work 

iWδ in a wavelength λ2 of the strip due to the virtual displacement dδ may be expressed as 
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Substituting Eq. (9) into Eq. (12), the internal virtual work may be written in terms of displacements d as 
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Performing the integration with respect to η , and after some mathematical manipulation involving complex 
arithmetic, Eq. (13) becomes  

( )dAd Tδλδ eRWi =                                   (14) 
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During the virtual displacements, the basic membrane forces acting on the four edges of a rectangle of width 
b and length λ2 also work mWδ ,and this is given by 
 

dzdydxW NLyTm ε∫∫∫= τσσδδ ;;                                    (16) 
 

On using the Eqs. (3, 4, 5, 7 & 8), and after some mathematical manipulation involving complex 
arithmetic, Eq. (16) becomes 
 

















+= ∑

=

dCBd
6

1

T )(
r

rrm ieRW δλδ                         (17) 

 
Details of the terms rB and rC are given in Kassaei [22]. 

Once the strip stiffness A and stability matrices ( )∑
=

+
6

1r rir CB have been derived for each thick strip, 
they can be assembled into the global matrices by using equilibrium and compability along nodal lines. 
Finally, the solution for the critical stress is obtained by allowing the determinant, obtained by subtracting 
the global stiffness and stability matrices, to vanish. 
 

3. NUMERICAL RESULTS 
a) General 
 
The semi-analytical complex finite strip method for thick plates, employing the higher order shear 
deformation theory described in the previous section, was programmed on a desktop workstation. In order to 
ascertain the validity and accuracy of the method, square simply supported laminated plates with length-to-
thickness ratio equal to 5 have been analysed. The thickness h is composed of equal thickness layers 
oriented at (0o/90o/00) and (45o/-45o/ 45o/-45o), the material properties of each layer are (E1=40.0E2; G12= 
G31=0.6 E2; G23=0.5E2; 12ϑ =0.25) and (E1=40.0E2; G12= G23= G31=0.5E2; 12ϑ =0.25), respectively. The 
resulting dimensionless critical stresses are exhibited in Table 1 in comparison with the classical plate theory 
(CPT) based on the higher order shear deformation theory (HSDT) and the first order shear deformation 
theory (FSDT), and ordinary finite strip method (FSM) by Akhras et al. [13]. It can be seen that the complex 
finite strip method yields an acceptable accuracy as compared to the other solutions. It should be noted that 
only one harmonic was used in the analysis (Akhras et al. [13]). 
 

Table 1. Non-dimensional critical stresses 2
2

2 /)( hEacryσ of square cross-ply laminates 
 

Method (0o/90o/00) (45o/-45o/ 45o/-45o) 
HSDT 11.008 - 
FSDT 10.525 15.117 

Akhras et al. [1995] 10.674 14.895 
Present 10.673 14.912 

 
b) Long thick plate under compression 
 

The local buckling of isotropic and laminated thick plates with longitudinal edges simply supported 
(SS) and clamped (CC) was studied using the complex finite strip method. The width-to-thickness ratio b/h 
is equal to 5. Table 2 shows the local buckling coefficient of both isotropic and laminated thick plate whose 
thickness layers are oriented at (45o/-45o). The wavelength at which the calculations were performed are 
those corresponding to minimum buckling stress and are shown in parentheses. These results indicate the 
accuracy which can be achieved by subdividing the plate into a relatively small number of strips. 
 
c) Long thick plate under shear 
 

The advantage of the present method over the formulation of Akhras et al. [13] is the ease with which it 
can handle shear. The local buckling coefficients of thick isotropic and orthotropic plates with longitudinal 
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edges (SS) and (CC) subjected to pure shear stresses are shown in Table 3. The wavelengths at which 
minimum local buckling coefficients are obtained are shown in parentheses. Again, it is possible to obtain 
results with acceptable accuracy by subdividing the plates into a few strips. 

 
Table 2. Local buckling coefficients of long isotropic and laminated thick plates under  

compression with width-to-thickness ratio (b/h=5.) 
 

Thick isotropic plate Laminated plate (45o/-45o 
No. Strips SS 

( )88.0/ =bλ  
CC 

( )60.0/ =bλ  
SS 

( )52.0/ =bλ  
CC 

( )47.0/ =bλ  

1 3.2534 9.0750 9.9547 64.4271 
2 3.1295 4.3970 9.8856 10.9431 
3 3.1238 4.2339 9.8806 10.5668 
4 3.1230 4.1846 9.8791 10.4363 
6 3.1227 4.1443 9.8783 10.3326 
8 3.1226 4.1270 9.8782 10.2931 
10 3.1226 4.1178 9.8781 10.2749 

 
Table 3. Local buckling coefficients of long isotropic and laminated thick plates under 

 pure shear with width-to-thickness ratio (b/h=5.) 
 

Thick isotropic plate Laminated plate (45o/-45o) 
No. Strips SS 

( )09.1/ =bλ  
CC 

( )74.0/ =bλ  
SS 

( )01.1/ =bλ  
CC 

( )74.0/ =bλ  
1 5.0081 10.6156 13.7595 31.9860 
2 3.8335 6.0354 10.9412 14.5636 
3 3.6886 4.8779 10.6539 12.0956 
4 3.6574 4.7184 10.5843 11.7452 
6 3.6449 4.6369 10.5528 11.5754 
8 3.6428 4.6111 10.5461 11.5304 
10 3.6422 4.5989 10.5439 11.5127 

 
d) Boundary conditions effects 
 

By using the additional functions in the longitudinal direction [21], the procedure is deployed to 
investigate the effect of different boundary conditions on the local buckling of thick orthotropic plates whose 
loaded edges are either simply supported (SS), one end clamped and the other simply supported (CS), or one 
end clamped and the other guided (CG). The Variation of the local buckling coefficients ka, obtained from 
the equation 

 
2

2
a 






=

h
b

E
k crσ

                  (18) 

 
against aspect ratio L/b for thick laminated plates whose longitudinal edges are SS, CC and CS are shown in 
Figs. 3, 4 and 5, respectively. It can be seen that the boundary conditions along the loaded edges 
substantially affect the value of ka when L/b is less than 0.8, while the restraint of the loaded edges has little 
effect on the local buckling coefficient of long thick plates. 

Figures 6 to 8 illustrate the variation of the shear local buckling ks with aspect ratio for thick plates 
under pure shear whose longitudinal edges are SS, CC and CS, respectively. Three boundary conditions 
along the loaded edges have been considered, namely SS, CS and CG. Again, the local buckling coefficient 
is insensitive to large values of the aspect ratio. In all Figs. 3-8 the thickness h is composed of equal 
thickness layers oriented at (0o/90o/00) and the length-to-thickness ratio is equal to 5. 
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Fig. 3. Buckling coefficient for simply supported (SS)     
orthotropic plate in compression with layers 

oriented at (0o/90o/0o) and b/h=5 

Fig.4. Buckling coefficient for clamped (CC) orthotropic 
plate in compression with layers oriented  

at (0o/90o/0o) and b/h=5 
 
 

            
Fig. 5. Buckling coefficient for simply supported-clamped 

(SC) orthotropic plate in compression with  
layers oriented at (0o/90o/0o) and b/h=5 

 

Fig. 6. Buckling coefficient for simply supported (SS) 
orthotropic plate in pure shear with layers 

 oriented at (0o/90o/0o) and b/h=5 
 

 

               
Fig. 7. Buckling coefficient for clamped (CC) orthotropic 

plate in pure shear with layers oriented  
at (0o/90o/0o) and b/h=5 

Fig. 8. Buckling coefficient for simply supported-clamped  
(SC) orthotropic plate in pure shear with layers 

 oriented at (0o/90o/0o) and b/h=5 
 
e) Local buckling half-wave length 
 

The variation of local buckling coefficient ka against dimensionless buckling half-wavelength b/λ  for 
a long orthotropic plate under uniform compression with the different length-to-thickness ratio is shown in 
Fig. 9, when thickness layers are oriented at (45o/-45o/45o/-45o), and in Fig. 10 for the case when thickness 
layers are oriented at (45o/-45o/-45o/45o). A plot of the local buckling coefficient ks for a long orthotropic 
plate under uniform shear with the different length-to-thickness ratio when thickness layers are oriented at 
(45o/-45o/45o/-45o) is also shown in Fig. 11.  
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Fig. 9. Buckling coefficient Vs half-wavelength for 

simply supported orthotropic plate in  
compression with layers oriented 
 at (45o/-45o/45o/-45o) and b/h=5 

Fig. 10. Buckling coefficient Vs half-wavelength for 
simply supported orthotropic plate in  

compression with layers oriented  
at (45o/-45o/-45o/45o) and b/h=5 

 

 
Fig. 11. Buckling coefficient Vs half-wavelength for simply supported orthotropic plate 

 in pure shear with layers oriented at (45o/-45o/45o/-45o) and b/h=5 
 

It can be seen that the curves are sensitive to the length-to-thickness ratio b/h. For all cases, the curves 
exhibit the same characteristics, namely two limbs, the first has a minimum value of b/λ between 0.4 and 
0.8. As the wavelength increases, the curves rise to a peak and beyond the peak, the local buckling 
coefficient decreases with increasing half-wavelength. As the curves show, the half-wavelength in which the 
minimum of the local buckling coefficients occurred increased to λ /b. 
 
f) Local buckling interaction 
 

The interaction curve for local buckling of thick orthotropic plate whose length-to-thickness ratio is 5 
when thickness layers are oriented at (45o/-30o) under combined shear and longitudinal compression has 
been investigated. Figure 12 shows the buckling stresses Lcrσ and crτ normalized with respect to the values 

croσ and croτ in pure compression and shear only respectively. This interaction curve was obtained by fixing 
the ratio between the compression and shear stress, and factoring this monotonically by a load factor in the 
analysis. Critical values of the local buckling load factor were computed over a range of half-wavelength 
and the minimum value at the local nadir was obtained. 

The interaction curve for local buckling under combined shear and bending for a plate whose length-to-
thickness ratio is 10 is given in Fig. 13. This curve was obtained by the method described above. It can be 
seen for Figs. 12 and 13 that the interaction between shear and compression is close to parabolic, while the 
interaction between shear and bending is close to circle, as is assumed in design for thin plates [23] and [24]. 
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Fig. 12. Interaction curve for local buckling in shear and   

compression for simply supported orthotropic 
 plate with layers oriented at 

 (45o/-30o) and b/h=5 

Fig. 13. Interaction curve for local buckling in shear and 
bending for simply supported isotropic  

plate with b/h=10 
 

 
4. CONCLUSIONS 

 
It has been shown that the complex finite strip method could be extended successfully to the analysis of 
thick plates. The method uses complex harmonic functions in the longitudinal direction, Hermitian cubic 
polynomials in the transverse direction and a parabolic distribution of the transverse shear strains through 
the thickness of the plate based on the higher-order shear deformation theory. As a result, slopes are 
continuous across the nodal lines between the finite strips. This method can predict accurate local buckling 
stress of very thick plates. The advantage of the method is the ease with which it can handle shear. Critical 
values of wavelength as a fraction of the plate width have been computed. Agreement with results quoted in 
the literature has been found for square laminates. The method has been used to calculate local buckling 
coefficients of thick composite long plates under compression and shear. Simply supported, clamped, simply 
supported-clamped thick orthotropic plates under compression and shear with different boundary conditions 
along the loaded ends have been studied. It was shown that although the restraint of the loaded edges in 
short thick plates has a considerable effect on the critical stresses, it has little effect on the buckling stress of 
long thick plates. The local buckling interaction between compression and shear was shown to be close to 
parabolic, and between pure bending and shear was shown to be close to circle. 
 

NOMENCLATURE 
 
A  strip stiffness matrix  
b  plate width 
Br and Cr strip stability matrices 
d  vector of perturbation displacement 
h  plate thickness 
i  1−   
ka local buckling coefficient in 

compression 
ks  local buckling coefficient in shear 
L  plate length 
p  vector of perturbation forces 
Q  laminate property 

Rx, Ry  interpolation matrices 
u, v  membrane displacements 
w  flexural displacement 
x, y, z  Cartesian axes in Fig.1 
X, Y, Z  interpolation matrices 
Γ  strain matrix 

Lε  and NLε  linear and nonlinear strain 
λ  local buckling half-wavelength 
ξ and  η  non-dimensional coordinates 
σcr  critical stress for compression 
τcr  critical stress for shear 
ψx, ψy  rotations normal to the mid-plane 

  

crocr σσ / crocr σσ /

crocr ττ / crocr ττ /
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