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Abstract – A one point quadrature pentahedral solid element with hourglass stabilization is 
developed for large deformation analysis of elastoplastic solids. This type of element is particularly 
suited for analysis of shell-like structures where multiple fracturing without any predefined direction 
takes place in the shell surface. Thus, the element design is motivated by requirements of the analysis 
of delamination and fracture in multilayered composite shells. The element formulation and the 
hourglass control procedure are based on the standard assumed strain method for stabilization of 
solid elements previously developed by other researchers. Several numerical tests, from simple beam 
bending to fracture analysis of laminated plates have been carried out to assess the performance of 
the element.           
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1. INTRODUCTION 
 

It is well known that a full integration of the internal forces and stiffness matrix arising in finite element 
analysis leads to difficulties in certain classes of problems. For instance, so-called volumetric locking is 
observed when the material is nearly incompressible. In addition, this scheme requires many computational 
operations to construct an element stiffness matrix and to obtain its internal forces. To remedy this situation, 
reduced integration schemes (RI) were introduced. However, a major drawback of the RI schemes is a mesh 
instability often known as hourglassing. They constitute a special case of the phenomenon known as 
kinematic or spurious zero-energy modes, and once activated they very quickly destroy the solutions. The 
selective reduced integration method (SRI), which was subsequently introduced, improved the drawbacks of 
the RI method, but it did not improve the computational efficiency. 

Recently, Belytschko and his co-workers [1, 2] have developed a reduced integration method with 
hourglass control. This method maintains the computational efficiency of RI, avoiding its instability, and can 
be readily implemented. This method has been widely used for hourglass stabilization of 2D quadrilateral, 
plate, shell and solid elements. 

The first attempts of this kind can be traced to Doherty et al. [3] who under-integrated the shear terms, 
suppressing the parasitic shear which causes the stiff behaviour of fully integrated quadrilaterals. However, 
these elements did not perform well for incompressible problems. Subsequently, Wilson et al. [4] 
constructed an element for both compressible and incompressible materials by adding incompatible bubble 
modes. The failure of the element to pass the patch test was remedied by Taylor et al. [5]. These elements 
comprise the underlying ideas for the later developed elements with hourglass control. 

In earlier papers, Belytschko and his colleagues [2, 6, 7, 8] developed reduced integration elements by 
employing hourglass control methods. The main process of hourglass control has been constructed by 
introducing parameters for artificial damping and artificial stiffness; the latter being preferred [9]. In these 
works, the anti-hourglass mode vectorsγ , which are derived by orthogonal conditions to preserve 
consistency, play an important part in the construction of a stabilization stiffness matrix and an additional 
correction force vector to avoid hourglass phenomena. 
                                                            
∗Received by the editors November 31, 2001 and in final revised form December 7, 2003 
∗∗Corresponding author 
 
 



S. Mohammadi / et al. 
 

Iranian Journal of Science & Technology, Volume 28, Number B1                                                                                  Winter 2004 

54

Unfortunately, the magnitudes of the associated generalized stresses are governed by user-input 
hourglass control parameters. These parameters are usually chosen to be just large enough to prevent 
hourglassing, so this approach to stabilization is often called perturbation hourglass control [10]. However, 
coarse mesh solutions of bending dominated problems can be quite sensitive to the magnitude of the 
stabilization parameter. More importantly, the stabilization does not project out volumetric strains, so for 
incompressible materials it is possible for the element to become quite stiff or even lock as the stabilization 
parameter is increased. This is particularly important in the nonlinear range where many materials are almost 
incompressible [11]. 

In the following years, efforts focused on determining the control value of the hourglass control 
parameters (Stainier & Ponthot, [9]). Belytschko et al. [2, 8] introduced the idea of using a variational form 
of the three field Hu-Washizu principle, while Liu et al. [12, 13] proposed using a Taylor development of 
the strain rate. In this alternative approach the strain field is projected to eliminate the volumetric locking. 
This methodology can be considered as a special case of the B -bar ( B ) method, in which the gradient 
matrix B of the standard displacement element is replaced by an assumed gradient matrix B . In other 
words, the standard B  matrix is projected onto a smaller space to eliminate the hourglass and locking 
phenomena both in a mathematical and physical sense [14]. 

Further contributions to the field were made by Koh and Kikuchi [15], Jetteur and Cescotto [16] among 
others. Koh and Kikuchi [15] developed 8-node bricks with directional reduced integration, which are 
effective for certain types of shells and beams. However, it can be shown that these elements are very 
sensitive to mesh distortion in the thin plate limit, so the elements can not be used as general purpose shell or 
plate elements. It appears from these studies that general three-dimensional elements, when distorted, will 
not perform well for plates and shells. Therefore, the enforcement of a structural hypothesis, such as the 
Kirchhoff or Mindlin-Reissner hypothesis, is crucial for good performance in thin plates and shells [11]. Liu 
et al. [17] proposed a new simple approach which is called the “multi-point quadrature scheme”, in which 
two quadrature points were used for a 4-node quadrilateral element in elastoplastic dynamic analysis by an 
explicit time integration scheme. However, the selection of the proper integration points for other elements 
in 3D has remained unresolved. 

Belytschko and Bindeman [11] developed uniform reduced integration elements by the assumed strain 
method introduced by Simo and Hughes [18] to build a strain field avoiding the locking phenomenon by 
including shear locking. They extended their element to nonlinear problems in which an additional 
correction nodal force vector is required, and is then carried out in a corotational system. However, the 
choice of a corotational formulation for general 3D problems is not straightforward [11]. They have shown 
that the Simo-Hughes form of the Hu-Washizu variational principle is far more concise and the results differ 
little from the more complicated forms which ensue from the complete application of the Hu-Washizu 
variational principle [1].  

  
Fig. 1. Geometric crack modelling for 8-node brick and 6-node pentahedral elements 
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An 8-node brick element with mixed formulation for large deformation analysis has recently been 
developed by Li and Cescotto [19] which uses the same approach as Belytschko and Bindeman [11] and 
reportedly passes the large strain patch tests and guarantees stability and convergence. It has the correct rank 
of the stiffness matrix so that the hourglass modes can be avoided completely. 

For a general 3D analysis of structures, 8-node solid elements are frequently used and preferred to other 
simple solid elements. However, in special circumstances, other solid elements may effectively be used. For 
example, pentahedral elements sometimes appear in relatively thick shell analysis as a substitute for 
triangular shell elements [20]. Here, the pentahedral element has been developed as an essential part of an 
element-split fracturing algorithm to be used in an advanced combined finite/discrete element analysis to 
investigate the formation, propagation and interaction of cracks and interlaminar delaminations in 
composites due to impact loadings [21, 22]. The impact analysis is performed using an explicit time 
integration scheme neglecting any wave propagation effects. 

The 8-node brick solid element could not be used in such an approach due to the creation of various 
types of elements (brick and pentahedral elements) from geometric modelling of a crack inside a damaged 
element (see Fig. 1). In contrast, splitting a pentahedral element creates only similar types of elements. 
In the following, a one point quadrature formulation for the 6-node pentahedral element is described which 
is mainly based on the work by Belytschko and Bindeman [11] and Li and Cescotto [19] for an 8-node brick 
element. Several numerical tests from simple beam bending to fracture analysis of laminated plates have 
been carried out to assess the performance of the element. 
 

2. FINITE ELEMENT INTERPOLATION AND DEFORMATION MODES 
 
a) Shape functions 
 
Figure 2 defines three coordinate systems, global XYZ, local xyz and curvilinearξηζ , required in the 
formulation of the pentahedral element. All calculations are carried out on the local corotational system and 
then transformed to global vectors for updating the global quantities according to the explicit time 
integration scheme. 

  
Fig. 2. Pentahedral element. Global XYZ, local xyz and curvilinear ξηζ coordinate systems 

 
The basic shape functions are obtained by multiplying the basis functions of a three node element by an 
appropriate function along the ζ direction, i.e. 
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For general pentahedral elements, the most obvious integration pattern is a combination of an 
appropriate triangular array in two dimensions and a Gauss distribution in the third direction. For the present 
case of the 6-node element, each triangular face requires only a single integration point to evaluate its 
constant strain states. However, even by ignoring the spurious modes along the thickness, a spurious mode 
corresponding to in-plane rotation of one triangular face relative to the other exists. So the minimum 
practical pattern of integration points for this element which avoids spurious modes is a 23×  pattern [20]. 
Obviously, this pattern is not economically acceptable in the context of an explicit approach, therefore a one 
point quadrature with hourglass stabilization is adopted. 
 
b) Geometry Description 
 

Adopting the isoparametric interpolation, the spatial coordinates of a given point ),,( ζηξ  within the 
element may be expressed as 
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iAi XXXXXXX ),,,,,()( 654321==X  is a vector of nodal coordinates. After some 
manipulations the above expression may be written as 
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c) Kinematic description 
 
1. Displacements: A similar approach for the displacement vector u  leads to 
 

 i
TTTTTT

iu dmmlllt )( 21321 ηζξζζηξ +++++=                                           (4) 
 
where id  represents the nodal displacement vector. The physical meaning of these deformation modes may 
be better understood from Figs. 3 and 4 in which deformation modes along the 1x  and 3x  axes have been 
considered, respectively. 
 

                 
    Fig. 3. Modes of deformation along the 1x  axis                Fig. 4. Modes of deformation along the 3x  axis 

 
By substituting the physical coordinates instead of the curvilinear coordinates in Eq. (3), a more 

appropriate format is achieved 
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where 3,2,1, =ji  and 2,1=α  and the summation rule over the repeated indices is implied throughout the 
paper, unless otherwise stated. The following orthogonality conditions are readily verified; 
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where αh  is a vector of the nodal values of αh  
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2. Strain Tensor: Assuming that small strain approximations are applicable, the strain-displacement 
relations are expressed as 
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So the strain-displacement matrix B  is defined 
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or in compact form 
 dBBεεε )( hh +=+=                                                               (11) 

with 
 dhΓdBε == hh                                                                  (12) 

 
where B  is the constant part and hB  is the hourglass stabilization part of the B  matrix 
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To evaluate the jh ,α  terms, the chain rule may effectively be used 
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which requires the evaluation of the Jacobian matrix  
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which eventually results in evaluation of  the derivatives of the hourglass modes 
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where 1−

ijJ  is the ij  component of the 1−J  matrix. 
 

3. ASSUMED STRAIN FIELD AND STABILIZATION PROCEDURE 
 
As emphasized by Belytschko and Bindeman [11] and later by Li and Cescotto [19], if Eq. (11) is used as 
the discretized strain field, the element can lock for incompressible materials and exhibit excessive energy in 
shear mode for bending dominated problems. To remedy this situation, an assumed strain field is employed 
for the non-constant part of the strain field. 
 
a) Assumed strain field  

First, the hourglass strain field is decomposed into normal and shear components  
 s

h
n
hh εεε +=                                                                               (18) 

 
in which the normal term is decomposed into deviatoric and volumetric parts  
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To eliminate volumetric locking, the strain field must be designed (projected) so that in the hourglass mode 
the dilatation of the projected strain field vanishes throughout the element. Hence, the volumetric part v
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the normal component of the hourglass strain field n
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For the shear part, the shear parameters are introduced to avoid shear locking problems  
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The ijβ  parameters may be determined from the element geometry according to the following rules: 
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with zyxY ,,=  and jiij YYY −= . 

For bending dominated problems shear locking is possible when 1=ijβ , whereas 0=ijβ  is associated 
with torsion dominated problems in which only shear energy exists. Therefore, Eqs. (18) and (19) describe a 
strain field that may behave well for both thin and thick structures thus avoiding hourglass locking for 
bending and torsional deformations. The hourglass strain field may be expressed as 
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with a similar expression for the corresponding hourglass mode derivatives, ( dhΓε =h ) 
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where h  and Γ  are defined in Eqs. (14), and the normal, deviatoric and shear parts of h  may be defined as 
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For later usage, it is convenient to define  

 dΓε =gh                                                                         (26) 
 
as the generalized hourglass strain. 
 
b) Stabilization procedure for linear elastic problems 
 
The stabilization force vector may be evaluated from the stabilization stiffness matrix 
 

 dKf stabstab = ,   and    Ω∫= Ω dh
T
hstab CBBK                                          (27) 

 
Here, the approach adopted by Li and Cescotto [19] is followed. For linear elastic materials, the stress field 
can be expressed as 
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The total stress is composed of two parts 

 hσσσ += 0                                                                       (29) 
where 
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Applying Eq. (25) and considering the following properties for linear elastic materials 
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Equation (31) results in 
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where ghσ  is the generalized hourglass stress 
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2
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where σh  may be interpreted as the interpolation function of the generalized hourglass stress in the element. 
 
c) Stabilization procedure for nonlinear applications 
 

To extend the formulation for nonlinear application, the variational form of the Hu-Washizu principle is 
used, where the displacements, strains and stresses are used as the independent test functions [18] 
 

 ∫ ∫ =−Ω∇+Ω−∇+Ω−∫ Ω ΩΩ 0)()()( extTTssTT ddd fdσuεuσσΣε δδδδ                    (35) 
 
where Ω  is the current domain, us∇  is the symmetric part of the displacement gradient field, ε  is the 
discretized strain field (assumed), σ  is the discretized stress field (assumed), Σ  is the Cauchy stress 
obtained from the strain field ε , extf  is the external load and d  is the nodal displacement. 

Following standard argument, it may be shown that the first term results in expressions (30, 31, 34) for 
the total stress and generalized hourglass stress, while the second term results in expressions (11, 12, 26) for 
total strain and generalized hourglass strain (For a comprehensive discussion see [19]. Only the third term of 
Eq. (35) directly contributes to the internal force vector 
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Thus, we have the equilibrium equation 
 0ff =− extint                                                                      (39) 

where  
gh

TTV HσΓσBf += 0
int  

 
The second part of the internal force vector is the hourglass contribution and is denoted  
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Th HσΓf =                                                                  (40) 

 
For the purpose of implementation, Eqs. (37) and (40) have been expanded, resulting in the following 
explicit formulae ( 2,1, =ba  and 3,2,1,, =lki  and 2,1=j  with no summation rule over repeated indices) 
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The values of ab

ijH  are numerically evaluated at the gauss point. 
As suggested by Belytschko et al.  [1, 11], the value of the shear modulus G  is updated for inelastic stress 
increments according to 
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and ijS∆  and ije∆  are components of the deviatoric part of the stress and strain increments, respectively, 
which are evaluated at the integration point.  
 

4. NUMERICAL VERIFICATION 
 
In this section some of the test results are reviewed to assess the performance of this element within the 
context of an explicit dynamic analysis. 
 

 

 

  
Fig. 5. Hourglass instability of the cantilever beam and its stabilized solution. ( 9210eE = , 

   1.0=ν , 7600=ρ , 10=length , 1=width , 1=height , 5525eload = ) 
 
a) Cantilever beam 
 

A cantilever beam subjected to a constant edge loading is considered. This fundamental test is 
presented to demonstrate a simple view of how the stabilized element may prevent the hourglass instability 
of an elastically bending beam. The behavior of the element without any hourglass control is depicted in Fig. 
5. The element fails at the very beginning of the analysis, however, with the hourglass control a very smooth 
deformed shape is achieved. Figure 6 compares the displacement history for the pentahedral and 8-node 
brick elements. 
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Fig. 6. Comparison of the free-end vertical displacement 

for 6-node and 8-node meshes 
Fig. 7. Spherical shell 

 
 
b) Spherical shell 
 

The geometric and material description of this standard test of shell elements [23] is depicted in Fig. 7. 
The pressure load is applied normally to the surface of the elements and its local direction and magnitude are 
kept constant during the analysis. Without any hourglass control, the analysis fails in the early timesteps, and 
the hourglass modes completely destroy the results of the analysis, as depicted in the figure. The results of 
deformation for a stabilized brick element and the present stabilized pentahedral element are compared in 
Fig. 9. The reference curve is taken from the analysis by quadrilateral shell elements based on Belytschko et 
al.  [24]. 

 

  
Fig. 8. Hourglass instability of the spherical shell 

 

 
Fig. 9. Crown displacement history of the spherical shell for different finite element meshes 

 
c) Cylindrical panel loaded impulsively 
 

A cylindrical panel was studied by Belytschko and Leviathan [10] to simulate the experimental results 
reported by Balmer and Witmer [25]. The geometry and mechanical properties of the structure are defined in 
Fig. 10. The impulsive loading with initial velocity 0v  lasts sec4 m . Due to symmetry, only one half of the 
structure is modelled and a 3D elastic perfectly plastic law based on the von Mises yield criterion and an 
associated flow rule is used. The permanent deformed shape of the cylinder is shown in Fig. 11. The 
displacement of the midpoint along the crown line of the cylinder is compared with the experimental results 
[25] and the numerical results obtained by Belytschko et al. [26, 10] (Fig. 12).  
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Cylindrical panel parameters 
ina 205.10=  

inl 56.12=  

int 125.0=  

inb 54.1=  

inR 9375.2=  
o120=α  

0705.1 eE =  

045.2 −= eρ  
psieY 044.4=σ  

33.0=ν  
sec/56500 inv =  

0=pE  
 

Fig. 10. Cylindrical panel. Geometry and mechanical properties 
 

                  
Fig. 11. Permanent deformation of the cylindrical panel 

 
Fig. 12. Comparison of the displacement history of the 

crown of the cylinder at its midspan  
d) Impact loading of a composite plate 
 

A numerical simulation is undertaken to study the fracture and delamination behaviour of a laminated 
composite plate which is subjected to a high velocity impact at its centre. The impact loading is simulated by 
a triangular load applied from 0  to sec5 µ  with a peak force of 1kN. Figure 13 illustrates the geometry of 
the plate, and defines the material properties and other necessary information [27]. The composite ply 
pattern is assumed to be [ ],45,45,45,45,45 nnnnn +−+−+ . Because of nonsymmetry, the whole plate has to 
be modelled. 

An unstructured mesh of pentahedral elements is used for modelling the plate. A regular three-element 
mesh is used across the thickness of each layer. In this example, the possibility of fracture and delamination 
is not restricted to any particular region. At the starting point, over 30,000 elements and 25,000 points are 
used for the finite element modelling. 

Figures 14-15 compare the fractured region (matrix cracking) of different layers at two different stages 
of the loading. Shaded regions in these figures represent the failed points of the mesh. Figure 16 illustrates 
the debonding patterns at different interfaces at the end of analysis. A special local remeshing technique is 
used for geometric modelling of a crack. Interactions between crack faces have been modelled using 
concepts of frictional contact mechanics [22].  
 

5. CONCLUSIONS 
 
A one point quadrature pentahedral solid element with hourglass stabilization has been developed as part of 
a combined finite/discrete element procedure to analyse the formation, propagation and interaction of cracks 
in solids due to impact loading. The element formulation and the hourglass control procedure are based on 
the assumed strain method. The element performs well in large deformation and nonlinear analysis. It is a 
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computationally inexpensive element and its main drawback is the fact that the number of elements are 
doubled in comparison to a brick element modelling of the same domain. Several numerical tests from 
simple beam bending to fracture analysis of laminated plates, have been carried out and confirmed as 
excellent performances of the element. 

 
 

 

 
Model size = m00444.01524.01524.0 ××  

Ply layout [ ],45,45,45,45,45 nnnnn +−+−+  

MPaeExx 34.152=  
MPaX t 2772=  
MPaX c 3100=  

MPaeE yy 37.10=  

MPaYt 3.79=  
MPaYc 231=  

35.0=ν  3/355.1 mKge=ρ  

MPaS 8.132=   
 

Fig. 13. [ ]nnnnn 45,45,45,45,45 +−+−+  Composite plate subjected to impact  
loading. Geometry and mechanical properties 

 
Layer 1 Layer 2 

  
Layer 3 Layer 4 

  
Layer 5 

  
Fig. 14. Fracture patterns of different layers at mst 0136.0=  
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Layer 1 Layer 2 

  
Layer 3 Layer 4 

  
                                                                                       Layer 5 

  
Fig. 15. Fracture patterns of different layers at mst 0362.0=  

 
Interface 2-1 Interface 3-2 

  
Interface 4-3 Interface 5-4 

  
Fig. 16. Delamination patterns at different layer interfaces at mst 0362.0=  
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