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Abstract – Rock masses supporting a tunnel often have natural cracks and joints which must be 
detected and analyzed at excavation to assess tunnel stability. Mathematically, these are 
discontinuities that must be embedded in the finite element model of the excavation to improve 
reliability. Because direct consideration of cracks as mathematical discontinuities in excavation 
models presents considerable computational and analytical challenge, a simple discrete element 
model (DEM) has been used to analyze the stability of tunnels in jointed rocks. This model, which is 
a member of the DEM group, has the advantage of being able to model large displacements and 
behavior of highly fractured rock masses. The low volume of numerical computing and high speed in 
analysis are other advantages of the used model. 

A new algorithm for detecting contact points between blocks has been used to improve the 
model. Different examples and case studies have been solved successfully using this modified 
discrete element model. 
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1. INTRODUCTION 
 

Analysis of rock mass behavior without considering the effect of existing discontinuities would not give a 
good image of the actual behavior of the rock mass in many cases.  In other words, the presence of cracks 
and discontinuities has an essential role in the behavior of rock mass under applied forces. The physical 
behavior of such a system is the opening of discontinuities and sliding along them. Therefore deformation of 
the system is governed by the sliding of blocks on each other. Although the behavior of intact rock is elastic, 
the presence of these discontinuities may lead to the nonlinear behavior of the rock mass.  The existing 
continuum models are not able to simulate the discontinuous masses such as highly jointed rocks, properly. 
Thus the need for a tool to model the effect of these discontinuities, for the rock masses with cracks and 
joints is quite obvious. Researchers have attempted to develop discontinum models such as finite, joint and 
distinct element approaches since 1968. In this paper, having reviewed the various discontinum models, the 
use of a simple model to consider the effect of discontinuities is presented. 

Goodman et al. [1] used a finite element method along with joint elements to model the behavior of 
rock blocks. The joints were assumed rectangles with zero widths and four nodes each on their corners. 
Having considered two degrees of freedom for each node, the number of degrees of freedom for the element 
is eight. Ghaboussi et al. [2] modified the joint element by reducing the number of degrees of freedom and 
therefore reducing the volume of computation. According to this model, the relative displacements of the 
surface of the elements are considered as independent degrees of freedom, thus the degrees of freedom on 
sliding surfaces changes to the relative displacement of two sliding surfaces. Zienkiewics et al. [3] and 
Burman [4] also used finite and joint element methods. Zienkiewics et al. analyzed the rock masses as no 
tension materials and Burman considered the intact rocks as rigid elements and the contacts between the 
adjacent blocks as joint elements.   
                                                            
∗Received by the editors November 20, 2001 and in final revised form January 13, 2003 
∗∗Corresponding author 
 
 
 



N. Hataf / M. Baharloo 
 

Iranian Journal of Science & Technology, Volume 28, Number B1                                                                                  Winter 2004 

96

Although these early developments succeeded in simulating discontinuities, they could not easily 
handle rock masses with large joints and crack densities. These situations increase the number of degrees of 
freedom, the size of stiffness matrix and when large displacements occur, rearrangement of finite element 
mesh is required, which is a very difficult task.  

Cundall [5] simulated rock masses by assuming them as blocks that are in contact with each other in 
edge-to-edge and corner to edge arrangements. Normal and shear springs were assumed at contact points. 
Forces were generated in the springs at the contact points due to the relative displacement of these nodes. 
The governing force-displacement equations along with the equations of motion of elements were solved 
simultaneously to simulate large displacements. This method is therefore one of the most proper ones in 
analyzing the discontinuous masses. It suffers, however, some shortcomings such as its sensitivity to the 
values of damping ratios. On the other hand, since the block relaxation takes place one by one the simulation 
is path dependent.  

Kawai [6] proposed another discontinuous model in which the elements were assumed rigid and their 
contact was through a set of springs spreading on their common surfaces. Due to the type of contact assumed 
between the blocks, this method was not able to simulate large displacements easily.  

Belytschko et al. [7] introduced a static simple model similar to Kawai’s model. In this model, a point 
was defined on the contact surface of two adjacent elements as “slave point”. The contact surface between 
elements was fixed and only change in contact area and/or element penetration was possible. Since the 
change in contact area and the amount of penetration of blocks were restricted, simulation of large 
displacement was difficult in this method.  

Following Cundall [5], Stewart and Brown [8] proposed a similar block relaxation simulation, but the 
elements were relaxed one by one and static equilibrium equations were used to calculate the displacements. 
In this model, the problem of damping factor effect was removed, but the path dependency problem still 
existed. 

Despite these shortcomings, the concept of block elements was later applied for stability analysis of soil 
slopes by Ching [9]. Wang and Garga [10, 11] proposed a new model called block-spring model, in which 
the static equilibrium equations and force displacement relations were used to obtain the contact forces. This 
model was able to simulate large displacement, but it did not have the problem of damping factor effect and 
path dependency as observed in the previously cited methods.  

In this paper, the principles of Wang and Garga’s block-spring model [10], for its simplicity and its 
capability to simulate large displacements, is used to analyze the behavior of rock masses. A special 
algorithm is developed to improve the abilities and accuracy of the method and a number of examples are 
solved. Wang and Garga [10] explained the theory of the Block-spring model in details and the main points 
are only presented here. 
 

2. METHODS 
 

In order to better understand the Wang and Garga [10] model, we refer to the left hand side of Fig.1 which 
shows the edge-to-edge and to the right hand side of the figure that displays the corner-to-edge contact. Two 
springs are assumed at each contact point (normal and shear).The relative displacements of the contact 
points lead in generating normal and shear forces in the springs. By simultaneous solution of static 
equilibrium equations and force-displacement equations for these springs at contact points, the forces and 
displacement of these points are calculated. The contact forces are calculated incrementally and the values 
obtained at each step are accumulated as follows: 
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In Eq. (2) n∆  and s∆   are normal and shear displacements of the springs and '
nK  and '

sK  are normal and 
shear stiffnesses of the springs in force per unit length. The above equations along with the static 
equilibrium equations (i.e. ∑ = 0F  in which ∑ F  is the sum of all forces applied on the element including 
contact, gravity and external forces) are solved to calculate the contact forces and displacement values.  
 
a) Spring stiffness 
 

To calculate the spring stiffnesses, the model proposed by Hamajima and Kawai [12] is used. In this 
model, the normal and shear stiffness of the springs are given as follows 
 

ν+
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in force per square length. In Eqs. (3) and (4), E  is modulus of elasticity and ν  is Poisson’s ratio of rock.  

For a discontinum environment, or in other words for rock masses with high density of cracks and 
joints referring to Fig. 2,  it is assumed that a weakness surface called zero element with zero width exists 
between elements 1 and 2. The shear stiffness of elements 1 and 2 are 1sK  and 2sK , which could be 
determined using Eq. (3). The stiffness of discontinuous surface, 0sK  ,  is determined using the results of the 
direct shear test.  
 

                  
Fig. 1. Contact type in distinct element method             Fig. 2.  Discontinuous element [14]   

 
In equilibrium condition, the stress-strain relation of the cited elements is 
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 In which 1h  and 2h  are the distances between the discontinuity surface to gravity center of elements 1 and 
2; 1sdδ  and 2sdδ  are shear displacements of elements 1 and 2, 0sdδ  is shear displacement of discontinuity 
element. sK  is shear stiffens between gravity centers of elements 1 and 2 and τ  is shear stress. Since 

021 ssss dddd δδδδ ++= , the following relation for the equivalent shear stiffness could be obtained 
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With a similar method the equivalent normal stiffness could be determined 
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In which 1nk  and 2nk  are normal stiffnesses of elements 1 and 2 that can be obtained from Eq. (4). 0nK  is 
stiffness of the discontinuous surface and other parameters which were described earlier. It should be 
mentioned that equivalent normal stiffness might also be obtained using an unconfined compression test on 
cracked specimen of rock. 
 
b) Rock bolt simulation 
 

A simple model is applied to simulate the rock bolt effect. The rock bolt is assumed to be anchored at 
both ends and the side friction is ignored. The rock bolt is replaced by a spring having an axial stiffness, Kb 
(Fig. 3). A rigid-plastic criteria is used to simulate the failure at both ends and an elasto-plastic criteria is 
used for simulating the yielding of the rock bolt material. 
 

                          

Fig. 3. The equivalent spring model for rock bolt 
 
c) Ground water pressure effect 
 

The effect of ground water in reducing normal pressure on the surface of discontinuities is considered. 
The effects of water pressure within rock blocks are ignored. 
 

3. MODIFICATIONS MADE TO BLOCK-SPRING MODEL 
 

To simulate the behavior of rock masses with joints and cracks we should use methods that are able to 
accommodate large displacements. Since such displacements lead to change in element arrangements and 
thus a change in contact points, we need a proper algorithm to detect these changes and define the new 
contact points. An algorithm which was developed and used for this purpose is described as follows: 
 
a) Determination of contact points 
 

To determine the contact points that are continuously changing, a proper algorithm is needed. The 
stiffness matrices should also be determined at different steps of calculations. Tran and Nelson [13] 
proposed a new algorithm for granular environment. We modified and used this algorithm for determination 
of contact points between blocks. The major modification to the algorithm was applying the effective 
contact length in calculating the equivalent stiffness of springs. The effects of these modifications in 
increasing the accuracy of deformation values and decrease in computation time are considerable and 
satisfactory as will be illustrated later in this paper. 
 
b) Determination of effective contact length  
 

By contact of elements we mean the element penetration. This assumption causes the springs to activate 
and therefore the development of contact forces. Of course the value of elements' penetration is so small that 
this assumption makes no considerable error. We consider two types of contacts. The first is simple contact 
in which contacts between adjacent elements are in two points, (Fig. 4). The second is complex contact in 
which the number of contact points is more than two (Fig. 5). This type of contact is more suitable for 
granular materials. To determine the contact points of the elements (i.e., the points of contact of faces) the 
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equations of the lines of faces are used. To reduce the computation time however, the number of lines to be 
examined for determination of contact points should be reduced. For this purpose a box around each element 
is determined as shown in Fig. 6 and the lines that are located in this box are found. The examination of 
contact points of adjacent elements is then only limited to the lines located in the overlapping regions of 
adjacent boxes related to each element. This is shown as the shaded area in Fig. 7. 
 

                                                           
Fig. 4.  Simple contact                                                      Fig. 5. Complex contact 

  

                                           
Fig. 6. The datum and the surrounding box                                 Fig. 7. The overlapping regions of the boxes 

 
Then the intersection points located in the overlapping regions are only considered and other points 

such as point “I” which is not in overlapping region, is ignored (Fig. 8). Having determined the contact 
points, the effective contact length, Le, is then calculated as follows: 
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where 121 ,, ppp YXX  and 2pY  are the coordinates of the contact points (Fig. 9). While the analysis is in 
progress, the effective length and the corresponding stiffness are recalculated repeatedly. 
 

                                                            
Fig. 8. The contact and intersection points                                   Fig. 9. The effective contact length   

 
c) Block diagram of the model 
 

Using the cited modified block-spring model, a computer code (DETUN) has been developed which is 
able to analyze the behavior of tunnels in jointed rocks. Baharloo [14] presented the program in detail. The 
code flow chart is illustrated in Fig. 10.  
 

4. RESULTS AND DISCUSSION 
 
The program described has been run to solve a number of classic problems for validation of the model and to 
illustrate its advantages to the previous methods [14] that have not presented here for the sake of brevity. 
The following examples have been analyzed and compared with the published results to show the typical 
abilities of the model. It is, thereafter shown that the computer code DETUN could be implemented in 
analysis of stability of tunnels in jointed rock successfully. 
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Fig. 10. Flow chart of computer code DETUN 

 
Example 1: Simulation of large displacement: Fig. 11 shows the slide of a block on a slope surface 
analyzed by DETUN to show the capability of the program to simulate large displacements. In this example, 
the shear strength between blocks 1 and 3 has been chosen to be less than the shear stress developed between 
these two blocks, resulting in sliding of block 3. During the process of sliding, the new contact points are 
developed and the small displacement of each step sums to previous displacements.  

At each step, the contact points between all blocks are determined by the algorithm described earlier. 
When block 3 reaches block 2 the stiffness matrix is revised for the new contact points and the equilibrium 
condition is satisfied, therefore the system becomes stable. 
Example 2: Stability analysis of an underground tunnel: In this example, the boundary conditions and 
the applied forces shown in Figs. 12 and 13 are borrowed from Rodrigues Prez geometry [11]. The 
characteristics of the materials are presented in Table 1. These authors used the finite element method 
developed by Goodman et al. [1] to evaluate the stability of a five stage excavated underground tunnel. The 
first stage is most critical with respect to other stages. The equivalent stress of 69 kPa was used to 
approximately simulate the rock bolt effect. The stability analysis of the tunnel for the first stage has 
therefore been performed by DETUN [14]. 
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As shown in Fig. 14, four sections around the tunnel have been considered. The values of displacements 
for these sections have been calculated by different methods for comparison. 
 

 

  
Fig. 11. Analysis of sliding of a block on a slope surface 

 

 
Fig. 12. Section of excavated tunnel, example 2 [11] 

 
Table 1. Properties of materials, example 2 (Pi=69 KPa) 

 
  
 
 
 
 
 
 
 
 
 
 
 

                               
Fig. 13. Discontinuity and boundary conditions                          Fig. 14. Sections around the tunnel 

 

Property Joint Shear zone Intact rock 
Young’s modulus E (MPa)  3.45e3 6.89e3 
Poisson’s ratio  0.30 0.15 
Cohesion (MPa) 0 0 34.5 
Friction angle (Deg.) 15 35 45 
Shear stiffness Ks (KN/m3) 1.36e5   
Unit weight (KN/m3)  25.93 25.93 

Foliated metamorphic rock, Jointed rock with shear zone. 
Rock : Unweathered to slightly weathered schist & gneiss 
Joints: smooth, planar, usually tight but occasionally open, weathered near the surface. 
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Figures 15 to 18 show the results of these comparisons. In these figures the results of FEM, the original 
block-spring model (Wang & Garga, “Blosmer”) and the DETUN calculations are presented, along with the 
actual values measured in the field. It can be seen that the modified block-spring model used in DETUN in 
most cases resulted in a better prediction of displacement compared to the original model. This is due to the 
algorithm used in the program to determine the contact points, and thus, the more accurate stiffness matrices 
obtained in each step of computation. Note that all the displacements are along the directions of the cross 
sections chosen.  
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Fig. 15. Comparison of results (section 1-1)                  Fig. 16. Comparison of results (section 2-2) 
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Fig. 17. Comparison of results (section 3-3)                         Fig. 18. Comparison of results (section 4-4) 

 
Example 3: Two adjacent tunnels: In Fig. 19 the mesh around two adjacent tunnels "a" and "b" is 
presented. The geometry and the boundary condition of the problem are also presented in the figure. Gravity 
forces are only considered in this case. In the rock mass around the tunnel, a discontinuous surface (D) and a 
set of joints are considered. The properties of the rock mass and discontinuities are illustrated in Table 2. In 
order to investigate the effect of the discontinuities on the behavior of the tunnels, two cases are considered: 
one with the discontinuity surface D, and the other without it. Figure 20 shows the principal stress 
distribution for these two cases. It can be seen that in case 1, because of the effect of  surface D that transfers 
the stresses less than the intact rock, the stresses resulting from excavation of tunnel "a" are concentrated on 
one side and mainly around "a". In case two however, in which the discontinuity D is eliminated, the stress 
concentration is much less than in case one due to the proper transfer of stresses. 
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Example 4: Ground water effect on a tunnel adjacent to a slope: The stability of a tunnel close to a slope 
is illustrated  in  this  example. Figure  21  shows the  geometry, boundary conditions and the surcharge (520 
 KPa) of the slope in which a tunnel is excavated. The rock mass is considered to have two sets of joints 
approximately perpendicular to each other. The properties of the discontinuities and the rock mass are given 
in Table 3. The stability analysis has been carried out for two cases again; firstly the slope is considered to 
be completely dry and secondly the water table has been considered as in Fig. 21. In the later case, it is 
assumed that the speed of tunnel excavation is such that the water table is stable as shown. 

For the tunnel to be stable and the blocks not to slide into the tunnel an equivalent uniform rock bolt 
pressure of 80 KPa was applied to the tunnel. The cases have been analyzed by DETUN. For two arbitrary 
sections 1-1 and 2-2, as shown in Fig. 22, the values of the displacement for two cases, dry (low water table) 
and saturated (high water table), have been presented for comparison, in Fig. 23 and 24. As it can be seen 
the displacements in saturated case are more than those in dry condition, which is due to the effect of pore 
pressure in reducing the normal stresses and therefore shear strength of the rock mass along with the 
discontinuities. However, in this special case the ground water effect is not considerable. 

 

  
Fig. 19. The condition of two adjacent tunnels, example 3 

 
Table 2. Properties of the rock and discontinuities, example 3 

 
property Intact  rock Joint 

Young’s modulus (KPa) 4e7  
Poisson’s ratio 0.25  
Cohesion (KPa) 200 100 
Friction angle(Deg ) 35 20 
Unit weight (KN/m3) 26.0  
Shear stiffness Ks (KN/m3)  1e5 
Normal stiffness Kn  (KN/m3)  1e6 
K0 0.0  

case 1: Tunnel a and b  with joint  D,  case 2: Tunnel a and b  without  joint  D 
 

Table 3. Properties of material in example 4 (Pi=80 KPa) 
 

property Joint set 1     Joint set 
2 

Intact 
rock 

Young’s modulus E (KPa) − − 4e7 
Poisson’s ratio − − 0.25 
Cohesion (KPa) 0 0 200 
Friction angle (Deg.) 25 20 35 
Shear stiffness Ks (KN/m3) 1e5 2.6e4 − 
Unit weight (KN/m3) − − 25.93 
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Case 1                                                                                                        Case 2  

Fig. 20. Principal stresses, example 3 
 

Effect of incremental loading: The effect of incremental loading (i.e. loading by steps) on the values of 
displacements is considered in dry condition of example 4 (Figs. 25 and 26).  As it can be seen, when the 
loading (i.e. 520 KPa) is exerted in one, two and eight steps, the displacements for sections 1-1 and 2-2 
decrease. This decrease, however is almost stopped when the loading increment is increased to more than 
eight steps. The accuracy in displacement calculation therefore is increased when loading is done 
incrementally. 
 

 

                            
Fig. 21. The geometry and boundary condition                               Fig. 22. Arbitrary sections, example 4 
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         Fig. 23. Comparison of displacements                                               Fig. 24. Comparison of displacements 
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5. CONCLUSIONS 
 

In this paper a computer code developed using a block-spring model was described. A simple method for 
determination of contact points between blocks was used. The results of analysis using the code were 
compared with published results to show the adaptability and capability of the program. The effect of 
incremental loading was also considered and it was shown that load stepping might increase the accuracy of 
calculations. As it was shown in this paper, although the model in its present format simulates most practical 
cases of rock mass behavior in a simpler manner compared to other methods, it is these authors intention to 
strengthen the method and modify it further by introducing damping factor and dynamic equilibrium 
equations in the near future. 
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Fig. 25. The effect of incremental loading                              Fig. 26. The effect of incremental loading 
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