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Abstract– In this paper, Incompressible SPH (ISPH) is used to simulate free-surface mudflow for 
two case studies, including dambreak and flow under a gate. The mixture of water and sediment in 
mudflow is treated as a non-Newtonian fluid. Mass and momentum conservation equations in a 2-
D Lagrangian frame, along with the Herschel-Bulkley rheology model, were solved to simulate 
mudflow using ISPH. Further, a Large Eddy Simulation (LES) model was used to evaluate the 
effect of turbulence on the free surface flow for these cases. The divergence-free velocity 
projection method was applied to enforce incompressibility of SPH. The results of the ISPH 
modeling compared well with experimental data and FVM-VOF results. The capability of the 
ISPH Lagrangian numerical model to capture large deformations makes it a powerful and efficient 
method for simulating mudflow case studies.           
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1. INTRODUCTION 
 

Mudflow is a type of hyper-concentrated sediment flow that is characterized by high concentrations of silt 
and clay [1]. There are numerous causes which initiate these flows, including intense rainfall, submarine 
landslides, dambreak on sloping beds, and anthropogenic activities. Multi-phase flow, highly viscous 
fluids, sediment transport, unknown mudflow waterfront properties, undetermined fluid mixture viscosity, 
and turbulent characteristics are some of the complicating features of mudflow. Mudflow can lead to 
major damages to river protection structures and other hydraulic structures [2, 3].  

Therefore, the simulation of mudflow is essential to clarify the flow impact on the design and 
operation of hydraulic structures in order to reduce destructive effects. 

Traditionally, experimental methods have been used to predict mudflow behavior [4, 5], however, 
measurement error, cost, and scale effects are some of the disadvantages of such methods. Nevertheless, 
fluid mixture rheological properties such as mixing, density, and sediment percentages have been 
determined by experimental methods up until now. With recent advances in computational power, 
mathematical models are now more widely used to model mudflow in one, two, and three dimensions [6].  
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Until now, two main mathematical approaches have been used to describe multi-phase free surface 
flows such as mudflow [7]. In the first method, which is the most common, separate equations are used to 
simulate solid (sediment) and liquid (water) phases. Usually, the continuity and momentum equations are 
used to model the fluid phase, and an advection-diffusion model is used to simulate the sediment transport 
[8, 9]. However, this method suffers from some difficulties such as considerable computational effort 
required to solve the coupled equations. 

In the second method, the water/sediment mixture is treated as a non-Newtonian fluid, in which the 
relation between shear stress and rate of shear strain is nonlinear. Thus, in the second method, there is no 
need to consider the role of pore pressure distribution and localized surface tension, and a single set of 
equations with a non-Newtonian model, used to calculate nonlinear viscosity, is implemented to simulate 
the behavior of a mudflow system [10, 11]. The appropriate non-Newtonian model and numerical method 
to solve mudflow equations are two main issues that must be considered in simulating free surface 
mudflow.  

Viscoplastic models are non-Newtonian fluids which are commonly used as a model to describe the 
viscosity of natural gravity-driven mudflow. Different constitutive equations of viscoplastic model such as 
cross, Bingham plastic, Herschel-Bulkley, and generalized viscoplastic models are used to describe the 
relatively complex rheology of mudflow [12-14]. Apparent viscosity is evaluated in all of these models, 
and is implemented in mathematical equations of free surface flow, typically the Navier-Stokes equation, 
instead of dynamic viscosity. This strategy makes it possible to model different types of flow such as 
mudflow. 

In various applications regarding the rheological properties derived from different experimental data 
it has been shown that the Herschel-Bulkley model is an appropriate model to describe the properties of 
mudflow [15]. 

Numerical methods which solve free surface mudflow equations can be classified into mesh-based 
and mesh-free categories. In order to overcome some difficulties and limitations that are associated with 
traditional mesh-based methods, novel numerical methods, namely mesh-free methods, have been 
gradually applied to different areas of fluid mechanics, particularly free surface problems [16]. Smoothed 
particle hydrodynamics (SPH) is one of the most powerful mesh-free methods that has recently been used 
to simulate free-surface flow problems [17]. SPH was originally developed in the late 1970s for 
astrophysical applications [18, 19], and was later applied to solid mechanics [20]. The ability of SPH in 
capturing large deformations led to its subsequent application to simulating free surface flows. 

SPH was firstly employed in free surface flows to model wave breaking [21], and progressively 
extended into other free surface applications. It has been used to successfully simulate some multi-phase 
free-surface flow problems such non-Newtonian dambreak on a horizontal bed [14], dambreak for 
mudflow down a steep flume [22], mobile-bed dambreak [7], landslides and debris flow [23], wave 
interactions with porous media [24], rapid sediment scour [25], the lock-exchange problem [26], granular 
free surface flow [27], and scouring beneath marine pipelines [28].  

Many advantages have been reported in the application of SPH to the above problems.  Firstly, easy 
tracking of the free surface, which is a challenge for Eulerian methods. Secondly, a Lagrangian description 
of flow particles can be useful when simulating highly transitory mudflow problems. Finally, the 
numerical formulation of SPH and consideration of the constitutive equation of a non-Newtonian fluid is 
relatively easy, compared to mesh-based methods.  

However, the implementation of solid boundary conditions is not straightforward in SPH, and the 
method requires considerable computational effort. Since SPH was originally formulated for compressible 
flows, its application to incompressible flows (e.g. simulating mudflow) is a more challenging task, and 
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the subject of much debate. In addition, due to the difficulty of satisfying boundary conditions in most 
turbulence models, it is not easy to apply these models in SPH. Recently, some advances have been 
achieved to overcome these major drawbacks and complexities in SPH.  

To enforce incompressibility, weakly compressible (WCSPH) and fully incompressible versions of 
SPH have been proposed, and compared to each other for modeling incompressible free-surface flows [29, 
30]. Incompressible flow is considered as a weakly compressible flow in WCSPH, and the pressure is 
calculated using the equation of state. Although WCSPH is relatively simple to program, due to some 
drawbacks such as pressure fluctuations, incompressible SPH has been introduced gradually into free 
surface flow problems [29, 31]. Generally, incompressibility is enforced in ISPH by solving the Poisson 
equation, based on two projection methods: divergence-free velocity and density-invariant [32, 33]. 
However, few non-Newtonian problems such as dam break analysis and mild-slope are simulated using 
the projection method [14]. Therefore, more research is required to evaluate the performance of ISPH in 
mudflow problems.  

Another important issue that hyper-concentrated fluids such as mudflow may encounter is turbulence, 
which can generally be modeled based on two approaches: using different laminarization methods, and 
direct numerical simulation (DNS). Although no modeling is required in DNS, and the turbulent energy 
cascade is resolved directly, it is still not applied in SPH due to its high computational cost [34]. Over the 
last decade, turbulence modeling for incompressible free surface problems is gradually emerging into 
SPH, based on time averaging or filtering of the Navier-Stokes equations. Although turbulence modeling 
is not used in mudflow problems, it has been applied to several free surface flow problems. The algebraic 
mixing length equation, the simplest of all turbulence models, is based on the Boussinesq eddy-viscosity 
approximation, and has been successfully applied to free surface flow problems [35]. The two equation (k-
 ) model was also implemented in SPH based on the Reynolds averaged Navier-Stokes (RANS) to model 
wave breaking and dambreak. Although the standard k-  model provided satisfactory results for turbulent 
isotropic flow, it is not appropriate for more complex free surface problems such as low-Reynolds flow, 
and flow near boundaries. Further, implementation of the boundary condition is not straightforward in the 
k-  model [36]. Explicit Algebraic Reynolds Stress Models (EARSM) are in the category of turbulence 
models based on the Reynolds averaged idea, and have been applied to simulate the collapse of water in 
SPH. To compare with the former method, EARSM generally covers the disadvantages of the k-  model 
[37]. However, solving five equations simultaneously in 2-D, while satisfying the B.C. for all of them, is a 
difficult and time consuming task. In addition, stability of the model is sensitive to the computational grid 
and B.C. Another alternative to simulating turbulence is large eddy simulation (LES), which is one of the 
most popular turbulence models in SPH. The time-dependent Navier-Stokes equations are averaged by 
filtering in Fourier or physical space. Therefore, the dynamics of large eddies in the turbulent energy 
cascade can be modeled directly. LES has been applied successfully in several free surface problems such 
as dambreak, wave breaking, and solitary waves in SPH and ISPH [33, 38, 39, 40]. Further, 3D water 
column collapse, water wave, and sloshing problems have been simulated using LES in SPH [41, 42]. Due 
to the relatively simple representation of the B.C. and accurate results of LES, it has been applied more 
than any of the other turbulence models in simulating free surface flow.  

In summary, despite the powerful performance of SPH in simulating complicated flows, there have 
been few attempts to apply ISPH to mudflow problems. Additionally, while turbulence modeling is 
commonly used in simulating free surface flows, it has not yet been applied to mudflow problems. 
The aim of this paper is to apply ISPH to some mudflow problems and evaluate the efficiency of this 
powerful method in simulating such flows. Due to high computational cost, we apply the method to solve 
small scale problems in the present study. Several cases such as flow under a gate with different 
downstream conditions, dam break, and submarine mudflow are examined. Incompressibility is enforced 
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using the divergence-free velocity projection method, and the Herschel-Bulkley rheological equation is 
used to model mudflow properties. We investigate the effect of the LES laminarization model in 
reproducing turbulence effects of mudflow in ISPH, and several bench marks, including FVM-VOF and 
experimental data, are used to verify the ISPH results. 
 

2. GOVERNING EQUATIONS 
 
The continuity and momentum equations in a 2-D Lagrangian frame were used to simulate free-surface 
mudflow [43] 
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where V 2-D velocity vector, P pressure,  fluid density, g gravitational acceleration vector, 
t time and ~  SGS shear stress tensor in the LES anisotropic turbulence model, which is related to the 

resolved strain rate tensor as, 
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where app molecular viscosity for water or apparent viscosity for mudflow, t turbulent eddy 
viscosity, k SGS turbulent kinetic energy, ij Kronecker delta, and ijS~ SGS strain rate tensor 
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For incompressible flow, the second term in Eq. (3) is omitted. The most widely used and the simplest 
model to define s  was proposed by Smogorinskey as, 
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where sl the mixing length for subgrid scale and is computed as  

                                                              yxCl ss  2  (6) 

where sC  Smogoriskey constant which is in the range of 0.094-0.2 [38] . For free surface flow in 
regions far from the wall, this constant is close to the value 0.1, and for the region near the wall it is 
calculated using, 
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where y distance to the wall and *u shear velocity.  
To evaluate the turbulence intensity, the turbulence parameter is defined as 

                                                                

tPT .  

(8) 

where t and   are dynamic turbulence and molecular viscosity, respectively. 
 

3. SPH FORMULATION OF FREE SURFACE MUDFLOW 
 
The mathematical equations are solved based on the predictor-corrector scheme using SPH. Details 
regarding SPH are described in the following sections. 
 
a) Introduction to SPH 
 

SPH is a Lagrangian numerical method, in which the computational domain is represented by 
particles without any connectivity between them. The interpolation process of any field function )(xf  in 
a discrete manner can be represented as, 
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 where ),( yxx  is the position vector, x is a dummy variable, h  is a smoothing length, and the 
summation is performed over all of the particles inside the support domain. The kernel function W  is 
determined according to some basic properties such as unity, compact support, isotropy, oddness, 
positivity, and uniform smoothness [16]. Among various expressions that have been introduced in the 
literature, the B-Spline kernel function is the most commonly used for free surface problems and is 
therefore used in this research: 

                                     


























 2R hrW

2R 1  R
h

hrW

1RRR
h

hrW

0),(

)2(
28

10),(

)
4
3

2
31(

7
10),(

3
2

32
2



  
(10) 

where 
h
rR   and r is the distance between two particles. 

Referring to Eq. (9), fluid density for particle i  is, 
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where j and jm , respectively, denote the density and mass of mudflow particles. A more detailed 
explanation of SPH is presented elsewhere [16, 44]. In the next section, the method for imposing 
incompressibility in SPH for free-surface problems is discussed. 
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b) Divergence-free velocity projection method 
 

One of the main approaches for imposing incompressibility in SPH is the divergence-free velocity 
method. 
In this method, the position and velocity of particles in the predictor step are computed using [26], 
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where subscripts t  and * represent the variables at time t, and at the predictor step, respectively. 
Also, *V  is given by, 
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Therefore, *r  is used to evaluate *  (Eq. (11)), and *V is replaced in the source term of the Poisson 
equation to update the pressure at 1t  as follows [32], 
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In the corrector step, 1tP  is used to calculate the position and velocity of particles at 1t , 
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1- SPH approximation of various terms in the projection method: Divergence, Laplacian, and gradient 
operators that have been used in the formulations of the projection method should be expanded using SPH 
rules.  

The divergence operator has been defined in various ways in previous SPH studies but, according to 
Liu [44], the following relation can improve the accuracy of the numerical method for the velocity term, 
and is used to define the RHS of the Poisson Equation, 
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The LHS of the Poisson Equation (Laplacian term) can also be approximated using different SPH 
formulations. One of the most popular equations is defined here by the following relationship, 
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where   is a constant to prevent the denominator becoming zero during the computation, and is usually 
taken as 0.1h [24]. 
The gradient operator that has been used in Eq. (2) can be replaced in SPH using, 
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The viscosity term in Eq. (2) is represented in SPH as, 
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where ~  is related to the rate of strain according to Eq. (3). To evaluate ijS~  in SPH, 
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in which  i  , j  are dummy indices in x  and y directions. 
 
c) Rheological model 
 

Slurries composed of a mixture of kaolin and water are usually considered to behave like non-
Newtonian mudflows. Experimental results show that in the majority of problems, the Herschel-Bulkley 
model can correctly describe the nonlinear properties of the stress tensor in mudflow [45]. In summary, 
the model is a combination of the power law and Bingham models, in which the stress for describing the 
nonlinear viscoplastic behavior of mudflow is defined as 
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where B , B , and N  are yield stress, equivalent dynamic viscosity, and  flow behavior index, 
respectively. These two final parameters are usually determined based on experimental viscometer results. 
The shear strain rate ( ) is given in 2-D, 
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The velocity gradient terms used in the calculation of shear may be approximated in SPH using Eq. (24). 
Accordingly, the apparent viscosity for mudflow in the Herschel-Bulkley model is defined as 
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The above-mentioned term is replaced in Eq. (3) to determine shear stress in the turbulence model. 
 
d) Error estimation 
 

Normal density error at each time step is used as a criterion to estimate the error of the projection 
methods. It is expressed as, 
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where i  is the particle density at each time step, 0  is the initial particle density, and N  is the number 
of fluid particles. 
 

4. MODEL APPLICATIONS AND RESULTS 
 
To evaluate performance, the ISPH method was applied to several case studies: dambreak with a dry 
downstream mild bed, flow under a gate with downstream tail water, and submarine landslide. Various 
complexities such as rapidly varying flow, non-hydrostatic pressure distribution, turbulent flow, regular 
and submerged hydraulic jumps, and multiphase flow are features of the selected problems. For 
comparison of the results, different bench marks, including FVM-VOF and experimental data, were used. 
 
a) Dambreak with downstream mild bed 
 

Dambreak is a complex natural gravity current flow that has been intensively studied, particularly by 
SPH. While many attempts have been carried out to model Newtonian fluid dambreak [46], viscoplastic 
material is involved in numerous natural dambreak processes, and few investigations (mainly 
experimental methods) are reported in this regard.  

To model mudflow dambreak problems, the free surface fluid was released instantaneously from 
behind a lock gate. Different flow profiles may emerge for finite and infinite reservoir extents, as shown in 
Fig. 1 [47]. The second case (i.e. finite extent) is considered here for the validation of ISPH.  

         
 

Fig. 1. Dambreak flow of (a) infinite and (b) finite extent [46] 
 

A tank with initial height and length of mudflow equal to 0.11 and 0.5 m, respectively, was 
considered. The problem is based on water-clay mixture experiments with a volume concentration of 
27.4% [48]. The mudflow properties for the Herschel-Bulkley rheological model are shown in Table 1. 
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Table1. The experimental results of mudflow properties [48] 

  ( 3m
kg ) B )(Pa  B ( 2m

Ns ) K 

1200 25.0 0.07 0.5 
 

The results of mudflow modelling based on ISPH numerical methods are shown in Fig. 2. Regarding 
the stability of ISPH, the time and space intervals were 0.001 s and 0.0045 m, respectively. Details of the 
computational demand for this problem are reported in Table 2. The ISPH code was run on an AMD 
Phenom II PC with 3.25 GB of RAM. 

The length of the front after dambreak simulated by ISPH at several times is compared with 
experimental data in Fig. 3. There is good agreement between ISPH and the experimental results [47]. 
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Fig. 2.  Free-surface flow after dambreak at times (a) 0 s, (b) 0.2 s, (c) 0.4 s, and (d) 0.6 s using ISPH 

 
Table 2. Computational demand of several problems using ISPH numerical method 

Problem CPU time(s) No. of  iterations No. of  particles 
Dambreak 4995 600 3851 

Flow under gate 
(regular hydraulic jump) 1322 200 3476 

Flow under gate  
(submerged hydraulic jump) 1695 200 4052 

Submarine landslide 9264 2000 3110 
 
Velocity vectors at various time-scales are shown in Fig. 4. During the initial stages of dambreak, two 
flow regions may be distinguished. The first region, named subcritical, is characterized by low velocity 
and high depth, which is in contrast with the second region, named supercritical. The maximum velocity 
occurs near the bore front in the supercritical region. Due to large deformation of the free surface, a 
maximum shear rate is also observed near the frontal region.  
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Fig. 3.  Comparison of length of front after dambreak, using ISPH, and experimental result 

 

 
 

Fig. 4. Velocity vectors after dambreak at times (a) 0.2 s, (b) 0.6 s using ISPH. 
 

Variation of the initial acceleration at the bore front leads to a pressure redistribution (Fig. 5). Over 
time, the initial acceleration reduces, and the pressure distribution approaches the hydrostatic distribution 
(after about 0.3 s). 

Regarding the effects of turbulence, turbulence parameter fields (Eq. (8)) at two times are shown in 
Fig. 6. The maximum turbulent intensity is near the bore front, which is affected by a negative wave. 
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Fig. 5. Pressure distribution (Pa) after dambreak at times (a) 0.2 s, (b) 0.6 s simulated using ISPH. 

 
 
 

 
 

Fig. 6. Turbulence parameter after dambreak at times (a) 0.2 s, (b) 0.6 s using ISPH 
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The numerical error was calculated using Eq. (28), and is shown at various times in Fig. 7. The error 
decreases with time and approaches 0.065%. 
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Fig. 7. Error estimated during dambreak simulation based on Eq. (28) 

 
b) Flow under a gate 
 

Gates are frequently used to control discharge of hydraulic structures. Based on the desired 
properties, there are different types of gate, such as sluice gates [49] or slide gates which are relevant to 
this research. In recent years, some mesh-free numerical methods such as SPH have been used to solve 
mudflow which has passed under gates [27]. In this research, the incompressible SPH method is 
implemented to find the free surface mudflow passed under a gate. To investigate the influence of 
downstream flow on the results, two different tail water depths were considered. Finite volume with VOF 
free surface tracking is used to compare results with ISPH. The mudflow rheological properties are again 
considered according to Table 1.  

A tank with length and height equal to 0.15 m, an opening of 0.031 m, and tail water depth equal to 
0.027 m are used for the initial geometry of the first case. It is assumed that the gate is removed 
instantaneously at t=0. Free surface modeling around the gate at two times is shown in Fig. 8, and has 
excellent agreement with VOF results. A submerged hydraulic jump after the gate shows that the initial 
depth of hydraulic jump is smaller than contraction depth after the gate.  

Mudflow free surface modeling around a gate for a tailwater depth of 0.012 m second case) is shown 
in Fig. 9. Due to the low tailwater, the initial depth of the hydraulic jump is greater than the contraction 
depth and leads to a regular hydraulic jump for mudflow. Again, there is a good agreement between the 
two methods in Fig. 9. 
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Fig. 8. Free-surface flow after gate for tailwater equal to 0.031 m at times (a) 0.12 s,  
and (b) 0.19 s using ISPH and FVM-VOF 
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Fig. 9. Free-surface flow after gate for tailwater equal to 0.031 m at times (a) 0.12 s, 

and (b) 0.19 s using ISPH and FVM-VOF 
 

To investigate convergence, temporal and spatial intervals are considered 0.001 s and 0.0028 m, 
respectively. Increasing the length or height of the tank and the number of particles can change the free 
surface flow to transient or steady situation. Computational characteristics of simulating the flow under 
the gate for two cases are shown in Table 2. Velocity vectors at two times for the regular and submerged 
hydraulic jumps are shown in Figs. 10 and 11.  

The pressure distribution under the gate at two times for two types of hydraulic jump are shown in 
Figs. 12 and 13. Near the gate, the distribution deviates from the hydrostatic pressure distribution. 
However, far from the gate a hydrostatic pressure distribution can be seen.  
 

 
 

 
 
 

Fig. 10. Velocity vector after gate for submerged hydraulic jump  
at times (a) 0.12 s, (b) 0.19 s using ISPH 
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Fig. 11. Velocity vector after gate for regular hydraulic jump at times (a) 0.12 s, (b) 0.19 s using ISPH 
 

 
 

 
 

Fig. 12. Pressure distribution (Pa) after the gate for submerged hydraulic 
 jump at times (a) 0.12 s, (b) 0.19 s using ISPH 
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Fig. 13. Pressure distribution (Pa) after the gate for regular hydraulic  
jump at times (a) 0.12 s, (b) 0.19 s using ISPH 

 
Turbulence parameter fields (Eq. (8)) at several times for two hydraulic jump examples are shown in 

Fig. 14 and Fig. 15. The maximum turbulent intensity is near the jump in both cases. Also, the intensity in 
the submerged hydraulic jump is higher than in the regular hydraulic jump.  
 

 
 

 
 

Fig. 14. Turbulence parameter after the gate (submerged hydraulic 
 jump) at times (a) 0.12 s, (b) 0.19 s using ISPH 
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The normalized errors calculated using Eq. (28) at various times are shown in Fig.16 for both types of 
hydraulic jump. After 0.6 and 1.1 s, the error approached 0.15% for the regular and submerged hydraulic 
jump, respectively. 

 
 
 

 
 

Fig. 15. Turbulence parameter after the gate (submerged hydraulic jump)  
at times (a) 0.05 s, (b) 0.19 s using ISPH 
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Fig. 16. Error estimated during (a) regular and (b) submerged hydraulic jump 
after flow under gate based on Eq. (28) 

 
5. CONCLUSION 

 
ISPH was applied to simulate mudflow in several free surface problems, with the Herschel-Bulkley 
rheological model used to represent the viscoplastic nature of the mudflow. Results showed that this 
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numerical technique is capable of handling complex flow cases such as submerged and regular hydraulic 
jumps after a gate. Further, the multi-phase problem was simulated properly in mudflow gravitational 
circulation caused by a submarine landslide. 

To compare with FVM and other traditional numerical methods, the Lagrangian nature of ISPH 
makes it very convenient for simulating free surface mudflow in cases with large deformations. The 
divergence-free velocity projection method properly modeled the incompressibility of mudflow problems, 
and no violent pressure fluctuations were observed. The maximum error to enforce incompressibility for 
all of the particles (internal and free surface) was 0.25% for the hydraulic jump problems. We found that 
for more complicated mudflow problems, larger errors are observed. 

According to the rheological parameters of Herschel-Bulkley model (
2
1

n ), mudflow has shear-
thinning or pseudo-plastic behavior, in which apparent viscosity decreases with increasing shear rate.  
The LES turbulence model was applied as a relatively simple model for simulating anisotropic free 
surface mudflow cases. The maximum turbulent parameter (=70) was observed near the bore front in the 
dam break case. Also, in the case of flow under a gate, the maximum intensity was located near the impact 
of the hydraulic jump. 
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