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Abstract– In this paper optimum design of truss structures for both discrete and continuous 
variables based on the Cuckoo Search (CS) algorithm is presented. The CS is one of the recently 
developed population based algorithms inspired by the behavior of some cuckoo species together 
with the Lévy flight behavior of some birds and fruit flies. In order to demonstrate the 
effectiveness and robustness of the present method, minimum weight design of truss structures is 
performed and the results of the CS and the selected well-known meta-heuristic search algorithms 
are compared for both discrete and continuous design of three benchmark truss structures.           
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1. INTRODUCTION 
 

Optimum design of steel structures with time and resource limitations has always been an important issue 
for structural designers. Methods employed in structural optimization design problems can be divided into 
mathematical programming and meta-heuristic algorithms. Due to the difficulties involved in the use of 
mathematical programming (complex derivatives, sensitivity to initial values, and the large amount of 
enumeration memory required) [1], for complicated problems, researchers have implemented different 
kinds of meta-heuristic algorithms for optimum design of structures. These methods consist of : Genetic 
algorithms (GAs) inspired from Darwin’s natural selection theorem, which is based on the idea of the 
survival of the fittest [2]; Ant Colony Optimization (ACO) that is a cooperative search technique 
mimicing the foraging behavior of the real-life ant colonies [3]; Particle Swarm Optimizer (PSO) 
motivated from the social behavior of bird flocking and fish schooling; Harmony Search (HS) algorithm 
being conceptualized using the musical process of searching for a perfect state of harmony [1, 4], Big 
Bang-Big Crunch (BB-BC) algorithm that relies on one of the theories of the evolution of the universe [5]; 
Charged System Search (CSS) method utilizing the governing laws of physics and mechanics [6, 7]; 
Imperialist Competitive Algorithm (ICA) being a socio-politically motivated optimization algorithm [8]; 
and hybrid or enhanced meta-heuristic algorithms [9-12].  

In this paper, a meta-heuristic method, the so-called Cuckoo Search algorithm, is utilized to 
determine optimum design of truss structures for both discrete and continuous variables. This algorithm 
was recently developed by Yang and Deb [13-15], and is based on the obligate brood parasitic behavior of 
some cuckoo species together with the Lévy flight behavior of some birds and fruit flies. The CS is a 
population based optimization algorithm and similar to many others meta-heuristic algorithms starts with a 
random initial population which is taken as host nests or eggs. The CS algorithm essentially works with 
three components: selection of the best by keeping the best nests or solutions; replacement of the host eggs 
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with respect to the quality of the new solutions or Cuckoo eggs produced based randomization via Lévy 
flights globally (exploration); and discovery of some cuckoo eggs by the host birds and replacing 
according to the quality of the local random walks (exploitation) [14]. 

Optimum design of the truss structures is known as benchmark in the field of optimal design of 
structures due to the presence of many design variables, large size of the search space, and many 
constraints. Therefore this can be considered a suitable means to investigate the efficiency of the new 
algorithms [8]. Comparison of the CS results with those of selected well-known meta-heuristics 
demonstrates the efficiency of the present algorithm. 
 

2. OPTIMUM DESIGN OF TRUSS STRUCTURES 
 
The aim of optimizing a structure is to find a set of design variables corresponding to the minimum weight 
satisfying certain constraints. This can be expressed as [8]: 
 

             1 2Find        x ,  x ,  ,  x ,    xng i iDX       
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where  X  is the set of design variables; ng is the number of member groups in structure (number of 
design variables), the grouping of members is performed according to the symmetry in the topology of 
truss; Di is the set of available values for the design variable xi, bounded by an upper and lower limit; 

  W X  presents weight of the structure; ( )nm i  is the number of members for the ith group; j  and jL  
denotes the material density and the length of the jth member for ith group, respectively;   g Xj  
denotes design constraints; and n  is the number of the constraints.  

iD  can be considered either as a continuous set or as a discrete one. In the continuous problems, the 
design variables can vary continuously in the optimization process. 
 

             , min , maxx | x x , xi i i i iD       (2) 
 
Where , minx i  and , maxx i  are minimum and maximum allowable values for the design variables x i , 
respectively. If the design variables represent a selection from a set of parts as 
 

                
 , 1 , 2 , nm( ),   ,  ,  i i i i iD d d d   (3) 

 
then the problem can be considered as a discrete one. 

In order to handle the constraints, a penalty approach is utilized. In this method, the aim of the 
optimization is redefined by introducing the cost function as: 
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Where n  represents the number of evaluated constraints for each individual design, and   denotes the 
sum of the violations of the design. The constants 1  and 2  are selected considering the exploration and 
the exploitation rate of the search space. Here, 1  is set to unity, 2  is selected in a way that it decreases 
the penalties and reduces the cross-sectional areas. Thus, in the first steps of the search process, 2  is set 
to 1.5 and ultimately increased to 3. 
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The constraint conditions for truss structures are briefly explained in the following. The stress 
limitations of the members are imposed according to the provisions of ASD-AISC [16] as follows: 
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Where, E  is the modulus of elasticity; yF is the yield stress of steel; cc denotes the slenderness ratio 

 i  dividing the elastic and inelastic buckling regions ( 22c yc E F ); i  the slenderness 

ratio  i i ikl r  ; k   the effective length factor; iL   the member length; and ir  the radius of 

gyration. The radius of gyration  ir  can be expressed in terms of cross-sectional areas as  b
i ir a A . 

Here, a and b are the constants depending on the types of sections adopted for the members such as pipes, 
angles, and tees. In this study, pipe sections  0.4993 and 0.6777a b    are adopted for bars [1]. 

The other constraint corresponds to the limitation of the nodal displacements: 
 

          0       1,  2,  ,  u
i i i nn      (7) 

 
Where i  is the nodal deflection; u

i  is the allowable deflection of node i; and nn  is the number of 
nodes. 
 

3. LÉVY FLIGHTS AS RANDOM WALKS 
 
The randomization plays an important role in both exploration and exploitation in meta-heuristic 
algorithms. The Lévy flights as random walks can be described as follows [13]:  

A random walk is a random process which consists of taking a series of consecutive random steps. A 
random walk can be expressed as: 
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Where Sn presents the random walk with n random steps and Xi is the ith random step with predefined 
length. The last statement means that the next state will only depend on the current existing state and the 
motion or transition Xn. In fact, the step size or length can vary according to a known distribution. A very 
special case is when the step length obeys the Lévy distribution; such a random walk is called a Lévy 
flight or Lévy walk. Actually, Lévy flights have been observed among foraging patterns of albatrosses, 
fruit flies and spider monkeys. 

From the implementation point of view, the generation of random numbers with Lévy flights consists 
of two steps: the choice of a random direction and the generation of steps which obey the chosen Lévy 
distribution. While the generation of steps is quite tricky, there are a few ways of achieving this. One of 
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the most efficient and yet straightforward ways is to use the so-called Mantegna algorithm. In the 
Mantegna’s algorithm, the step length S can be calculated by: 
 

          
1/
uS

v   (9) 

 
Where β is a parameter between [1, 2] interval and is considered to be 1.5; u and v are drawn from normal 
distribution as  
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Studies show that the Lévy fights can maximize the efficiency of the resource searches in uncertain 
environments.  
 

4. CUCKOO SEARCH ALGORITHM 
 
This algorithm is inspired by some species of a bird family called cuckoo because of their special lifestyle 
and aggressive reproduction strategy. These species lay their eggs in the nests of other host birds (almost 
other species) with amazing abilities such as selecting the recently spawned nests, and removing the 
existing eggs that increase the hatching probability of their eggs. On the other hand, some of the host birds 
are able to combat this parasites behavior of cuckoos, and throw out the discovered alien eggs or build 
their new nests in new locations.  

This algorithm contains a population of nests or eggs. For simplicity, the following representations 
are used; where each egg in a nest represents a solution and a Cuckoo egg represents a new one. If the 
Cuckoo egg is very similar to the host’s egg, then this Cuckoo’s egg is less likely to be discovered, thus 
the fitness should be related to the difference in solutions. The aim is to employ new and potentially better 
solutions (Cuckoos’) to replace a not-so-good solution in the nests [14]. 

For simplicity in describing the CS, the following three idealized rules are utilized [15]:  
1) Each Cuckoo lays one egg at a time, and dumps it in a randomly chosen nest;  
2) The best nests with high quality of eggs are carried over to the next generations;  
3) The number of available host nests is constant, and the egg which is laid by a Cuckoo is discovered 
by the host bird with a probability of pa in the range of [0, 1]. The later assumption can be 
approximated by the fraction pa of the n nests which is replaced by new ones (with new random 
solutions).  
Based on the above three rules, the basic steps of the CS can be summarized as the pseudo code 

shown in Fig. 1. 
This pseudo code, provided in the book entitled Nature-Inspired meta-heuristic algorithms by Yang 

[13], is a sequential version and each iteration of the algorithm consists of two main steps, but another 
version of the CS which is supposed to be different and more efficient is provided by Yang and Deb [15]. 
This new version has some differences with the book version as follows: 
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Objective function 1 2( ),  ( ,  ,  ,  )df x x x x x  ; 
Generate initial population of n  host nests  ( 1 ,  2,  ,  )ix i n  ; 
while (stop criterion) 
    Get a Cuckoo randomly by Lévy flights; 
    Evaluate its quality/fitness 

iF ; 

    Choose a nest among n (say j ) randomly; 
    if 

i jF F  

         replace j by the new solution; 
    end 
    Abandon a fraction (pa) of worse nests 
    [and build new ones at new locations via Lévy flights] 
    Keep the best solutions (or nests with quality solutions); 
    Rank the solutions and find the current best; 
end while 
Post process results and visualization; 

                               Fig. 1. Pseudo code of the CS 
In the first step, according to the pseudo code, one of the randomly selected nests (except the best 

one) is replaced by a new solution produced by random walk with Lévy flight around the so far best nest, 
considering the quality. But in the new version, all of the nests except the best one are replaced in one 
step, by new solutions. When generating new solutions, xi

(t+1) for the ith Cuckoo, a Lévy flight is 
performed using the following equation: 
 

        
( 1) ( ) .t t
i ix x S    (12) 

 
where α > 0 is the step size parameter and should be chosen considering the scale of the problem and is set 
to unity in the CS [14] and decreases function as the number of generations increases in the modified CS 
[17, 18]. It should be noted that in this new version, the solutions’ current positions are used instead of the 
best solution so far as the origin of the Lévy flight. The step size is considered as 0.1 in this work because 
it results in efficient performance of algorithm in our examples. The parameter S is the length of random 
walk with Lévy flights according to the Mantegna’s algorithm as described in the Eq. (9). 

In the second step, the pa fraction of the worst nests are discovered and replaced by new ones. 
However, in the new version, the parameter pa is considered as the probability of a solution’s component 
to be discovered. Therefore, a probability matrix is produced as: 
 

       

1          
0         ij

if rand pa
P

if rand pa


  
 (13) 

 
Where rand is a random number in [0, 1] interval and Pij is discovering probability for jth variable of ith 
nest. Then all of the nests are replaced by new ones produced by random walks (point wise multiplication 
of random step sizes with probability matrix) from their current positions according to quality. In this 
study the later version of the CS algorithm is used for optimum design of truss structures. 

 
5. OPTIMUM DESIGN OF TRUSS STRUCTURES USING 

 CUCKOO SEARCH ALGORITHM 
 
The pseudo code of optimum design algorithm is as follows: 

a) Initialize the Cuckoo Search algorithm parameters 

The CS parameters are set in the first step. These parameters are number of nests (n), step size 
parameter (α), discovering probability (pa) and maximum number of analyses as the stopping criterion.  
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b) Generate initial nests or eggs of host birds 

The initial locations of the nests are determined by the set of values assigned to each decision 
variable randomly as 

     
(0)
, ,min ,max ,min.( )i j j j jnest x rand x x    (14) 

 
Where nesti,j

(0) determines the initial value of the jth variable for the ith nest; xj,min and xj,max are the 
minimum and the maximum allowable values for the jth variable; rand is a random number in the interval 
[0, 1]. For problems with discrete design variables it is necessary to use a rounding function. 

c) Generate new Cuckoos by Lévy flights  

In this step all of the nests except for the best so far are replaced in order of quality by new Cuckoo 
eggs produced with Lévy flights from their positions as 
 

        
( 1) ( ) ( ) ( ). .( ).t t t t
i i i bestnest nest S nest nest r     (15) 

 
where nesti

t is the ith nest current position; α is the step size parameter which is considered to be 0.1; S is 
the Lévy flights vector as in Mantegna’s algorithm; r is a random number from a standard normal 
distribution and nestt

best is the position of the best nest so far. 

d) Alien eggs discovery 

The alien eggs discovery is performed for all of the eggs using the probability matrix for each 
component of each solution. Existing eggs are replaced considering quality by newly generated ones from 
their current position by random walks with step size such as [19]: 
 

    
( ) ( )

. [ ][ ] - [ ][ ]

.*t 1 t

S rand nests permute1 i j nests permute2 i j

nest nest S P



 
 (16) 

 
where permute1 and permute2 are different rows permutation functions applied to the nests matrix and P 
is the probability matrix which was mentioned in the Eq. (13). 

e) Termination criterion 

The generation of new Cuckoos and the discovery of the alien eggs steps are performed alternately 
until a termination criterion is satisfied. The maximum number of structure analyses is considered as the 
algorithm’s termination criterion. 
 

6. DESIGN EXAMPLES 
 
In this section, common truss optimization examples as benchmark problems are optimized with the CS 
algorithm. The final results are compared to the solutions of other methods to demonstrate the efficiency 
of the CS. We have tried to vary the number of host nests (or the population size of n ) and the probability 
pa . From our simulations, we found that n=7 to 20 and pa=0.15 to 0.35 are efficient for design 

examples. The examples contain a 25-bar transmission tower and a 72-bar spatial truss with both discrete 
and continuous design variables and a dome shaped space truss with continuous search space. 
 
Example 1: A 25-bar space truss 

The 25-bar transmission tower is widely used in structural optimization to verify various meta-heuristic 
algorithms. The topology and nodal numbering of a 25-bar space truss structure is shown in Fig. 2 taken 
from [6]. The material density is considered as 0.1 lb/in3 (2767.990 kg/m3) and the modulus of elasticity is 
taken as 107 psi (68,950 MPa). Twenty-five members are categorized into eight groups, as follows: (1) A1, 
(2) A2 –A5, (3) A6–A9, (4) A10–A11, (5) A12–A13, (6) A14–A17, (7) A18–A21, and (8) A22–A25. In this 
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example, designs for both a single and multiple load cases using both discrete and continuous design 
variables are performed. The parameters of the CS algorithm are considered to be pa=0.15, number of 
nests=10 and the maximum number of analyses=14,000 as the stopping criterion. 
 

 
Fig. 2.  A 25-bar space truss 

i. Design of the 25-bar truss utilizing discrete variables 
In the first design of the 25-bar truss, a single load case {(kips) (kN)} is applied to the structure at nodes 1, 
2, 3 and 4 as follows: 1{(0, −10, −10) (0, −44.5, −44.5)}, 2{(1, −10, −10) (4.45, −44.5, −44.5)}, 3{(0.6, 0, 
0) (2.67, 0, 0)} and 4{(0.5, 0, 0) (2.225, 0, 0)}. The allowable stresses and displacements are respectively 
±40 ksi (275.80 MPa) for each member and ±0.35 in (±8.89 mm) for each node in the x, y and z 
directions. The range of discrete cross-sectional areas is from 0.1 to 3.4 in2 (0.6452 to 21.94 cm2) with 0.1 
in2 (0.6452 cm2) increment (resulting in 34 discrete cross sections) for each of the eight element groups 
[20]. 

The CS algorithm achieves the best solution weighted by 484.85 lb (2157.58 N), after 2000 analyses. 
Although this is identical to the best design developed using BB-BC algorithm [20] and a multiphase ACO 
procedure [21], it performs better than others when the number of analyses and average weight for 100 
runs are compared. Table 1 presents the performance of the CS and other heuristic algorithms. 
 

Table 1   Performance comparison for the 25-bar spatial truss under single load case 

Element group Optimal cross-sectional areas (in2) 
 GA GA  ACO  BB-BC phase 1, 2 Present work 
 [20] [20] [21] [20] in2 cm2 

1      A1 0.10 0.10 0.10 0.10 0.10 0.645 
2      A2–A5 1.80 0.50 0.30 0.30 0.30 1.935 
3      A6–A9 2.30 3.40 3.40 3.40 3.40 21.935 
4      A10–A11 0.20 0.10 0.10 0.10 0.10 0.645 
5      A12–A13 0.10 1.90 2.10 2.10 2.10 13.548 
6      A14–A17 0.80 0.90 1.00 1.00 1.00 6.452 
7      A18–A21 1.80 0.50 0.50 0.50 0.50 3.226 
8      A22–A25 3.00 3.40 3.40 3.40 3.40 21.935 
Best weight (lb) 546.01 485.05 484.85 484.85 484.85 2157.58 (N) 
Average weight (lb) N/A N/A 486.46 485.10 485.01 2158.29 (N) 
Number of analyses 800 15,000 7700 9000 2000  

  
ii. Design of the 25-bar truss utilizing continuous variables 

In the second design of the 25-bar truss, the structure is subjected to two load cases listed in Table 2. 
Maximum displacement limitations of ± 0.35 in (±8.89 mm) are imposed on every node in every direction 
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and the axial stress constraints vary for each group as shown in Table 3. The range of cross-sectional areas 
varies from 0.01 to 3.4 in2 (0.06452 to 21.94 cm2) [6].  

Table 4 shows the best solution vectors, the corresponding weights, average weights and the required 
number of analyses for the present algorithm and some other meta-heuristic algorithms. The best result is 
obtained by IACS algorithm [22] from the point of low weight and number of analyses. The CS-based 
algorithm needs 6100 analyses to find the best solution while this number is equal to 9596, 15,000, 9875, 
12,500 and 7000 analyses for a PSO-based algorithm [6], HS algorithm [1], a combination algorithm 
based on PSO, ACO and HS [10], an improved BB–BC method using PSO properties [5] and the CSS 
algorithm [6], respectively. The difference between the result of the CS and these algorithms is very small, 
but the average weight obtained by the CS algorithm for 100 runs is better than others. The convergence 
history for best result and average weight of 100 runs is shown in Fig. 3. The important point is that 
although the CS requires 6100 analyses to achieve the 545.17 lb (2426.02 N), it can achieve the 545.76 lb 
(2428.63 N) after 2700 analyses, because CS uses the exploration step in terms of Lévy flights. If the 
search space is large, Lévy flights are usually more efficient. 
 

Table 2. Loading conditions for the 25-bar spatial truss 

Case Node Fx kips (kN) Fy  kips (kN) Fz kips (kN) 

1 1 1.0 (4.45)    10.0 (44.5) −5.0 (−22.25) 
 2 0.0    10.0 −5.0 (−22.25) 
 3 0.5 (2.225)    0.0    0.0 
 6 0.5 (2.22 )    0 0    0.0 
2 1 0.0    20.0 (89) −5.0 (−22.25) 
 2 0.0 −20.0 (−89) −5.0 (−22.25) 

 
Table 3. Member stress limitation for the 25-bar space truss 

Element group C mpression ksi (MPa) Tension ksi (MPa) 
1      A1 35.092 (241.96) 40.0 (275.80) 
2      A2–A5 11.590 (79.913) 40.  (275.80) 
3      A6–A9 17.305 (119.31) 40.0 (275.80) 
4      A10–A11 35.092 (241.96) 40.0 (275.80) 
5      A12–A13 35.092 (241.96) 40.0 (275.80) 
6      A14–A17 6.759 (46.603) 40.0 (275.80) 
7      A18–A21 6.959 (47.982) 40.0 (275.80) 
8      A22–A25 11.082 (76.410) 40.0 (275.80) 

 
Table 4. Performance comparison for the 25-bar spatial truss under multiple load cases 

 
Element group Optimal cross-sectional areas (in2) 

 PSO 
[6] 

HS  
[1] 

IACS 
 [22] 

HPSACO  
[10] 

HBB–BC  
[5] 

CSS 
 [6] 

Present work 
in2 cm2 

1      A1 0.010 0.047 0.010 0.010 0.010 0.010 0.01 0.065 
2      A2–A5 2.121 2.022 2.042 2.054 1.993 2.003 1.979 12.765 
3      A6–A9 2.893 2.950 3.001 3.008 3.056 3.007 3.005 19.386 
4      A10–A11 0.010 0.010 0.010 0.010 0.010 0.010 0.01 0.065 
5      A12–A13 0.010 0.014 0.010 0.010 0.010 0.010 0.01 0.065 
6      A14–A17 0.671 0.688 0.684 0.679 0.665 0.687 0.686 4.428 
7      A18–A21 1.611 1.657 1.625 1.611 1.642 1.655 1.679 10.830 
6      A22–A25 2.717 2.663 2.672 2.678 2.679 2.660 2.656 17.134 
Best weight (lb) 545.21 544.38 545.03 544.99 545.16 545.10 545.17 2426.02 (N) 
Average weight (lb) 546.84 N/A 545.74 545.52 545.66 545.58 545.18 2426.05 (N) 
Number of analyses 9596 15,000 3254 9875 12,500 7000 6100  
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Fig. 3. Convergence history of the 25-bar space truss under multiple load cases 

 
Example 2: A 72- bar space truss 
For the 72-bar spatial truss structure shown in Fig. 4 taken from [5], the material density is 0.1 lb/in3 
(2767.990 kg/m3) and the modulus of elasticity is 107 psi (68,950 MPa). The 72 structural members of this 
spatial truss are categorized into 16 groups using symmetry: (1) A1–A4, (2) A5–A12, (3) A13–A16, (4) A17–
A18, (5) A19– A22, (6) A23–A30, (7) A31–A34, (8) A35–A36, (9) A37–A40, (10) A41–A48, (11) A49–A52, (12) 
A53–A54, (13) A55–A58, (14) A59–A66 (15), A67– A70, and (16) A71–A72. In this example, designs for multiple 
load cases using both discrete and continuous design variables are performed. The values and directions of 
the two load cases applied to the 72-bar spatial truss for both discrete and continuous designs are listed in 
Table 5. The members are subjected to the stress limits of ±25 ksi (±172.375 MPa) for both discrete and 
continuous designs. Maximum displacement limitations of ±0.25 in (±6.35 mm) are imposed on every 
node in every direction and on the uppermost nodes in both x and y directions respectively for discrete and 
continuous cases. In this example, the parameters of the CS algorithm are considered to be pa=0.15 and 
number of nests =7, maximum number of analyses=21,000. 
 

Table 5. Multiple loading conditions for the 72-bar truss 

Case Node Fx  
kips (kN) 

Fy  
kips (kN) 

Fz  
kips (kN) 

1 17 0.0 0.0 −5.0 (−22.25) 
 18 0.0 0.0 −5.0 (−22.25) 
 19 0.0 0.0 −5.0 (−22.25) 
 2  0.  0.0 −5.0 (−22.25) 
2 17 5.0 (22.25) 5.0 (22.25) −5.0 (−22.25) 

 

i. Design of the 72-bar truss using discrete variables 
In this case, the discrete variables are selected from 64 discrete values from 0.111 to 33.5 in2 (71.613 to 
21612.860 mm2). For more information, the reader can refer to Table 2 in Kaveh and Talatahari [8]. 

Table 6 shows the best solution vectors, the corresponding weights and the required number of 
analyses for the present algorithm and some other meta-heuristic algorithms. The CS algorithm can find 
the best design among the other existing studies. Although the number of required analyses by the CS 
algorithm is slightly more than ICA algorithm, the best weight of the CS algorithm is 389.87 lb (1734.93 
N), that is 2.97 lb (13.22 N), lighter than the best result obtained by ICA algorithm [8]. 
 

0 2000 4000 6000 8000 10000 12000 14000
544 

546 

548 

550 

552 

554 

556 

558 

560 

Number of analyses

W
ei

gh
t (

Ib
) 

  

  
The best feasible result 
The average penalized weight of 100 runs



A. Kaveh and T. Bakhshpoori 
 

IJST, Transactions of Civil Engineering, Volume 37, Number C1                                                                            February 2013 

10

 
Fig. 4.   A 72-bar space truss 

 
Table 6.  Performance comparison for the 72-bar spatial truss with discrete variables 

Element group Optimal cross-sectional areas (in2) 
 GA PSOPC HPSO  HPSACO ICA Present work 

[8] [8] [8] [9] [8] in2 cm2 

1 A1–A4 0.196 4.490 4.970 1.800 1.99 1.800 11.613 
2 A5–A12 0.602 1.457 1.228 0.442 0.442 0.563 3.632 
3 A13–A16 0.307 0.111 0.111 0.141 0.111 0.111 0.716 
4 A17–A18 0.766 0.111 0.111 0.111 0.141 0.111 0.716 
5 A19–A22 0.391 2.620 2.880 1.228 1.228 1.266 8.168 
6 A23–A30 0.391 1.130 1.457 0.563 0.602 0.563 3.632 
7 A31–A34 0.141 0.196 0.141 0.111 0.111 0.111 0.716 
8 A35–A36 0.111 0.111 0.111 0.111 0.141 0.111 0.716 
9 A37–A40 1.800 1.266 1.563 0.563 0.563 0.563 3.632 
10 A41–A48 0.602 1.457 1.228 0.563 0.563 0.442 2.852 
11 A49–A52 0.141 0.111 0.111 0.111 0.111 0.111 0.716 
12 A53–A54 0.307 0.111 0.196 0.250 0.111 0.111 0.716 
13 A55–A58 1.563 0.442 0.391 0.196 0.196 0.196 1.265 
14 A59–A66 0.766 1.457 1.457 0.563 0.563 0.602 3.884 
15 A67–A70 0.141 1.228 0.766 0.442 0.307 0.391 2.523 
16 A71–A72 0.111 1.457 1.563 0.563 0.602 0.563 3.632 
Weight (lb) 427.203 941.82 933.09 393.380 392.84 389.87 1734.93 (N) 
Number of analyses N/A 150,000 50,000 5330 4500 4840  

  
ii. Design of the 72-bar truss using continuous variables 

In this case the minimum value for the cross-Sectional areas is 0.1 in2 (0.6452 cm2) and the maximum 
value is limited to 4.00 in2 (25.81 cm2).  

The CS algorithm achieves the best result among other algorithms from the aspects of weight, 
number of required analyses and the average weight of 100 runs. The convergence history of the best 
result and the average weight of 100 runs are shown in Fig. 5. Notice that as shown in this figure, although 
the CS requires 10,600 analyses to achieve 379.63 lb (1689.37 N), it achieves the 380 lb (1691 N) possible 
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design after 4900 analyses. Table 7 compares the results of the CS to those of the previously reported 
methods in the literature. 

For further studies of one of two CS parameters we have tried this example alternatively for constant 
number of nests as 7 and various amounts of pa from the [0, 1] interval with 21,000 as the maximum 
number of analyses. The convergence history of the average weight for 100 runs is shown in Fig. 6. 
According to this figure, the values from [0.15, 0.35] are more efficient for the performance of the 
algorithm and 0.15 gives the best result among others.  
 

Table 7.  Performance comparison for the 72-bar spatial truss with continuous variables 

Element group Optimal cross-sectional areas (in2) 
 

 GA ACO PSO  BB–BC HBB–BC  Present work 
 [5] [21] [5] [20] [5] in2 cm2 

1 A1–A4 1.755 1.948 1.7427 1.8577 1.9042 1.9122 12.055 
2 A5–A12 0.505 0.508 0.5185 0.5059 0.5162 0.5101 3.267 
3 A13–A16 0.105 0.101 0.1000 0.1000 0.1000 0.1000 0.646 
4 A17–A18 0.155 0.102 0.1000 0.1000 0.1000 0.1000 0.645 
5 A19–A22 1.155 1.303 1.3079 1.2476 1.2582 1.2577 8.487 
6 A23–A30 0.585 0.511 0.5193 0.5269 0.5035 0.5128 3.343 
7 A31–A34 0.100 0.101 0.1000 0.1000 0.1000 0.1000 0.645 
8 A35–A36 0.100 0.100 0.1000 0.1012 0.1000 0.1000 0.646 
9 A37–A40 0.460 0.561 0.5142 0.5209 0.5178 0.5229 3.197 
10 A41–A48 0.530 0.492 0.5464 0.5172 0.5214 0.5177 3.345 
11 A49–A52 0.120 0.100 0.1000 0.1004 0.1000 0.1000 0.648 
12 A53–A54 0.165 0.107 0.1095 0.1005 0.1007 0.1000 0.645 
13 A55–A58 0.155 0.156 0.1615 0.1565 0.1566 0.1566 1.013 
14 A59–A66 0.535 0.550 0.5092 0.5507 0.5421 0.5406 3.492 
15 A67–A70 0.480 0.390 0.4967 0.3922 0.4132 0.4152 2.839 
16 A71–A72 0.520 0.592 0.5619 0.5922 0.5756 0.5701 3.486 
Weight (lb) 385.76 380.24 381.91 379.85 379.66 379.63 1689.37 (N) 
Average weight (lb) N/A 383.16 N/A 382.08 381.85 379.73 1689.80 (N) 
Number of analyses N/A 18,500 N/A 19,621 13,200 10,600  

 

 

 

 
Fig. 5. Convergence history of the 72-bar space truss with continious variables 
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Fig. 6. The convergence history for the average weight of 100 runs, with constant  

number of nests and different values of pa 
 
Example 3: Design of the 120-bar dome shaped truss 
The topology, nodal numbering and element grouping of the 120-bar dome truss are shown in Fig. 7. For 
clarity, not all the element groups are numbered in this figure. The 120 members are categorized into 
seven groups, because of symmetry. Other conditions of the problem are as follows [8], the modulus of 
elasticity is 30,450 ksi (210,000 MPa) and the material density is 0.288 lb/in3 (7971.810 kg/m3). The yield 
stress of steel is taken as 58.0 ksi (400 MPa). The dome is considered to be subjected to vertical loading at 
all the unsupported joints. These loads are taken as −13.49 kips (−60 kN) at node 1, −6.744 kips (−30 kN) 
at nodes 2 through 14, and −2.248 kips (−10 kN) at the rest of the nodes. The minimum cross-sectional 
area of all members is 0.775 in2 (5 cm2) and the maximum cross-sectional area is taken as 20.0 in2 
(129.032 cm2). The constraints are stress constraints (as defined by Eqs. (5) and (6)) and displacement 
limitations of ±0.1969 in (±5 mm), imposed on all nodes in x, y and z directions. 

In this example, the parameters of the CS algorithm are considered to be pa=0.15, the number of 
nests =7 and the maximum number of analyses=21,000. Table 8 shows the best solution vectors, the 
corresponding weights and the required number of analyses for convergence of the present algorithm and 
some other meta-heuristic algorithms. The CS-based algorithm needs 6300 analyses to find the best 
solution while this number is equal to 150,000, 32,600, 10,000, 10,000, 7000 and 6000 analyses for a 
PSO-based algorithm [10], a PSO and ACO hybrid algorithm [10], a combination algorithm based on 
PSO, ACO and HS [10], an improved BB–BC method using PSO properties [5], the CSS algorithm [6] 
and the ICA algorithm [8], respectively. As a result, the CS optimization algorithm has the second best 
convergence rates among the considered meta-heuristics and its difference with the ICA is only 300 
analyses. Comparing the final results of the CS and those of the other meta-heuristics shows that CS finds 
the second best result while the difference between the result of the CS and that obtained by the HPSACO 
[10], as the first best result, is very small. A comparison of the allowable and existing stresses and 
displacements of the 120-bar dome truss structure using CS is shown in Fig. 8. The maximum value for 
displacement is equal to 0.1969 in (5 mm) and the maximum stress ratio is equal to 99.99%. 
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Fig. 7. A 120-bar dome shaped truss 

 
Table 8.  Performance comparison for the 120-bar dome shaped truss with continuous variables 

 
Element group Optimal cross-sectional areas (in2 ) 

PSOPC  PSACO HPSACO HBB–BC CSS  ICA  Present work 
 [10] [10] [10] [5] [6] [8] in2 cm2 

1 A1 3.040 3.026 3.095 3.037 3.027 3.0275 3.0244 19.512 
2 A2 13.149 15.222 14.405 14.431 14.606 14.4596 14.7168 94.947 
3 A3 5.646 4.904 5.020 5.130 5.044 5.2446 5.0800 32.774 
4 A4 3.143 3.123 3.352 3.134 3.139 3.1413 3.1374 20.241 
5 A5 8.759 8.341 8.631 8.591 8.543 8.4541 8.5012 54.847 
6 A6 3.758 3.418 3.432 3.377 3.367 3.3567 3.3019 21.303 
7 A7 2.502 2.498 2.499 2.500 2.497 2.4947 2.4965 16.106 
Best weight (lb) 33481.2 33263.9 33248.9 33287.9 33251.9 33256.2 33250.42 147964.37 (N) 
Average weight(lb) N/A N/A N/A N/A N/A N/A 33253.28 147977.10 (N) 
Number of 
analyses 

150,000 32,600 10,000 10,000 7000 6000 6300  
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Fig. 8. Comparison of the allowable and existing constraints for the 120-bar dome shaped truss  
using the CS (a) Displacement in the x direction, (b) Displacement in the y  

direction, (c) Displacement in the z direction, (d) Stresses 
 

7. CONCLUSION 
 
A version of cuckoo search algorithm via Lévy flights is applied to optimum design of truss structures 
using both discrete and continuous design variables. Looking at the CS algorithm carefully, one can 
observe essentially three components: selection of the best, exploitation by local random walk, and 
exploration by randomization via Lévy flights globally. In order to sample the search space effectively so 
that the newly generated solutions are diverse enough, the CS uses the exploration step in terms of Lévy 
flights. In contrast, most meta-heuristic algorithms use either uniform distributions or Gaussian to generate 
new explorative moves. For large search spaces the Lévy flights are usually more efficient. 

Unique characteristics of the CS algorithm over other meta-heuristic methods are its simplified 
numerical structure and its dependency on a relatively small number of parameters to define and 
determine - or limit- the algorithm’s performance. In fact, apart from the step size parameter α and the 
population size n , there is essentially one parameter pa. 

Three design examples consisting of two space trusses with continuous and discrete design variables 
and a dome-shaped truss with continuous search space are studied to illustrate the efficiency of the present 
algorithm. The comparisons of the numerical results of these structures utilizing the CS and those obtained 
by other optimization methods are carried out to demonstrate the robustness of the present algorithm in 
terms of good results and number of analyses together. The most noticeable result obtained by the CS is 
that the average weight of 100 runs is better than other algorithms. 
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